Higher Past Papers

Mr Davie

October 2022

1 Intro

This document was created in order to make it easier to find past paper questions, both for teachers and students. I will do my best to keep this document up to date and include new past paper questions as they become available. If you spot any mistakes, or want to suggest any improvements, send me an email at MrDaviePhysics@gmail.com. I am more than happy to send you the Tex file used to produce the document so that you can modify it as you wish.

2 How to Use

The table on the next page contains links to questions sorted by topic and year. Clicking on a link will take you to that question. The marking instructions follow directly after each question with the exception of multiple choice questions and open ended questions. The answers to multiple choice are at the end of that section of multiple choice questions. I have not included the marking instructions for open ended questions as they do not contain enough information for you to mark your own work. Instead ask your teacher to have a look at what you have written. To return to the table click on Back to Table at the top or bottom of any page. Trying to navigate the document without doing this is tedious.

Before starting any past paper questions I recommend that you have paper copies of the Relationships Sheet and Data Sheet to avoid wasting time. If you don't have them then print pages 379-382 of this document.

	2015		2016		2017		2018		SPQ		2019	
	P1	P2										
motion - equations and graphs	1,2		1,2		1	1a,3	1,2		1,2	1a,b,3a(i)	1,3,4	1a,c
forces, energy and power	3,4,5,6		3	2c	2, 3		3,4	2	3,4	1c, d, 2,3b	5	2
collisions, explosions, and impulse		2	4	3		2		3	5,6	3a(ii,iii)	6	1 b
gravitation		1,3	5	1		$\begin{aligned} & 5 \mathrm{a}(\mathrm{ii}), \\ & 5 \mathrm{~b}(\mathrm{ii}) \end{aligned}$	5	1	7,8		2	4
special relativity	7			4	4	7d	6,7		9	4	8	7c(ii)
the expanding Universe	8	4b, 5	6,7	5	5,6,7	1b,5b(i)		5,10c	10,11	5	9,10	5,6
forces on charged particles	10,11			7,8d		8	10	6	12,13	6	11,12	
the Standard Model	9	6	8,9			$\begin{aligned} & 5 \mathrm{a}(\mathrm{i}), \\ & 7 \mathrm{a}, \mathrm{~b}, \mathrm{c} \end{aligned}$	8,9		14	7	13	7a,b,c(i)
nuclear reactions	12		10	8	8	9	11		15	7e, 8	14	7d, 8
inverse square law		8	15		14,15		12		16	9		9a(ii), b
wave-particle duality		7	11,12		9,10			7		10	15,16	
interference	13	9b	13	9	11	10	13	8	17	11	17	10
spectra	16	4a	16	12bii		6		10a,b	18		19	9a(i)
refraction of light	15	9a	14	10	12,13		14	9	19	12	18	11
monitoring and measuring AC	17,18		17		16			12	20,21		20,21	
current, potential difference, power, and resistance	18		19			14b(i)	15,16	$\begin{aligned} & 2 \mathrm{a}(\mathrm{ii}), \\ & 12 \mathrm{~b} \end{aligned}$	22,23		23	
electrical sources \& internal resistance		10		12a		12		11a,b	24	13		12
capacitors		11	20	13	17,18	13	17,18,19		25	14		13
semiconductors and p-n junctions	19			12bi	19	14a,b(ii)		11c		15	24	14
open ended		5,7		6,11		4,11		4,6c		5c,10c		3,13d
unseen formula/graph plotting	20	12		14	20	15		13		16	7	5b,15
uncertainties	14			2(a,b)			20			11b(ii)	22,25	

		2020	2022		2023		2024		2025		2026	
	P1	P2										
motion - equations and graphs	1,2,3	1b,c,3a	1,2	2a(i)								
forces, energy and power	4,5,6	1d,2a,3a,8a,15a	3,4,5,6	2a(ii)								
collisions, explosions, and impulse	7	3		3a-c								
gravitation		1,5a		1,5c								
special relativity	9,10	7b	7									
the expanding Universe	11,12	2b,4,6b,c	8,9	5a,b								
forces on charged particles	13	7a,7c(ii),8b(i,ii)	10	7								
the Standard Model	14,15	5b(ii),7c(i), 7d(i)	11,12	6a,b,e								
nuclear reactions	16	7d(ii)	13,14									
inverse square law		9b(i,ii)	15	8a								
wave-particle duality	17	8a,b(i)		9								
interference	18	5b(i),10	16	10								
spectra		6a,11		8b								
refraction of light	19,20	12	17	11								
monitoring and measuring AC		13	18									
current, potential difference, power, and resistance	21,22		19,20									
electrical sources \& internal resistance		14	21	12								
capacitors	23,24,25		22,23	13								
semiconductors and p-n junctions		9b(iii)	24	3d								
open ended		4,11		4,6e								
unseen formula/graph plotting	8	15b	25	14								
uncertainties		10		2b								

Back to Table

X757/76/02

Physics Section 1-Questions

TUESDAY, 5 MAY
1:00 PM - 3:30 PM

Instructions for the completion of Section 1 are given on Page two of your question and answer booklet X757/76/01.
Record your answers on the answer grid on Page three of your question and answer booklet.
Reference may be made to the Data Sheet on Page two of this booklet and to the Relationships Sheet X757/76/11.

Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Back to Table

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Magnitude of the charge on an electron	e	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Universal Constant of Gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Gravitational acceleration on Earth	g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Hubble's constant	H_{0}	$2.3 \times 10^{-18} \mathrm{~s}^{-1}$			

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	656	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
	486			509	Green
	434			480	Blue
	$\begin{aligned} & 410 \\ & 397 \end{aligned}$		Lasers		
	389		Element	Wavelength/nm	Colour
			Hetium-neon		Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $/ \mathrm{kg} \mathrm{m}^{-3}$	Melting Point/K	Boiling Point/K
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Back to Table

SECTION 1-20 marks
 Attempt ALL questions

1. The following velocity-time graph represents the vertical motion of a ball.

Which of the following acceleration-time graphs represents the same motion?
A acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

B acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

C acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

D acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

E acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

Back to Table

2. A car is travelling at $12 \mathrm{~m} \mathrm{~s}^{-1}$ along a straight road. The car now accelerates uniformly at $-1.5 \mathrm{~m} \mathrm{~s}^{-2}$ for 6.0 s .
The distance travelled during this time is
A 18 m
B $\quad 45 \mathrm{~m}$
C 68 m
D 72 m
E 99 m .
3. A box of mass m rests on a slope as shown.

Which row in the table shows the component of the weight acting down the slope and the component of the weight acting normal to the slope?

	Component of weight acting down the slope	Component of weight acting normal to the slope
A	$m g \sin \theta$	$m g \cos \theta$
B	$m g \tan \theta$	$m g \sin \theta$
C	$m g \cos \theta$	$m g \sin \theta$
D	$m g \cos \theta$	$m g \tan \theta$
E	$m g \sin \theta$	$m g \tan \theta$

4. A person stands on bathroom scales in a lift.

The scales show a reading greater than the person's weight.
The lift is moving
A upwards with constant speed
B downwards with constant speed
C downwards with increasing speed
D downwards with decreasing speed
E upwards with decreasing speed.

Back to Table

5. A car of mass 900 kg pulls a caravan of mass 400 kg along a straight, horizontal road with an acceleration of $2.0 \mathrm{~m} \mathrm{~s}^{-2}$.

Assuming that the frictional forces on the caravan are negligible, the tension in the coupling between the car and the caravan is

A 400 N
B $\quad 500 \mathrm{~N}$
C 800 N
D 1800 N
E 2600 N .
6. Water flows at a rate of $6.25 \times 10^{8} \mathrm{~kg}$ per minute over a waterfall.

The height of the waterfall is 108 m .
The total power delivered by the water in falling through the 108 m is
A $\quad 1.13 \times 10^{9} \mathrm{~W}$
B $\quad 1.10 \times 10^{10} \mathrm{~W}$
C $\quad 6.62 \times 10^{11} \mathrm{~W}$
D $\quad 4.05 \times 10^{12} \mathrm{~W}$
E $\quad 3.97 \times 10^{13} \mathrm{~W}$.
7. A spacecraft is travelling at a constant speed of 0.60 c relative to the Moon.

An observer on the Moon measures the length of the moving spacecraft to be 190 m .
The length of the spacecraft as measured by an astronaut on the spacecraft is
A 120 m
B 152 m
C 238 m
D 297 m
E $\quad 300 \mathrm{~m}$.

Back to Table

8. A siren on an ambulance emits sound at a constant frequency of 750 Hz .

The ambulance is travelling at a constant speed of $25.0 \mathrm{~m} \mathrm{~s}^{-1}$ towards a stationary observer.
The speed of sound in air is $340 \mathrm{~m} \mathrm{~s}^{-1}$.
The frequency of the sound heard by the observer is
A 695 Hz
B 699 Hz
C 750 Hz
D 805 Hz
E 810 Hz .
9. The emission of beta particles in radioactive decay is evidence for the existence of

A quarks
B electrons
C gluons
D neutrinos
E bosons.
10. Two parallel metal plates X and Y in a vacuum have a potential difference V across them.

An electron of charge e and mass m, initially at rest, is released from plate X.
The speed of the electron when it reaches plate Y is given by
A $\frac{2 e V}{m}$
B $\sqrt{\frac{2 e V}{m}}$
C $\sqrt{\frac{2 V}{e m}}$
D $\frac{2 V}{e m}$
$\mathrm{E} \quad \frac{2 m V}{e}$
11. A potential difference of 2 kV is applied across two metal plates.

An electron passes between the metal plates and follows the path shown.

A student makes the following statements about changes that could be made to allow the electron to pass between the plates and reach the screen.

I Increasing the initial speed of the electron could allow the electron to reach the screen.

II Increasing the potential difference across the plates could allow the electron to reach the screen.

III Reversing the polarity of the plates could allow the electron to reach the screen.

Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E I and III only
12. The following statement describes a fusion reaction.

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}+\text { energy }
$$

The total mass of the particles before the reaction is $6.684 \times 10^{-27} \mathrm{~kg}$.
The total mass of the particles after the reaction is $6.680 \times 10^{-27} \mathrm{~kg}$.
The energy released in the reaction is
A $\quad 6.012 \times 10^{-10} \mathrm{~J}$
B $\quad 6.016 \times 10^{-10} \mathrm{~J}$
C $\quad 1.800 \times 10^{-13} \mathrm{~J}$
D $3.600 \times 10^{-13} \mathrm{~J}$
E $\quad 1.200 \times 10^{-21} \mathrm{~J}$.

Back to Table

13. Two identical loudspeakers, L_{1} and L_{2}, are operated at the same frequency and in phase with each other. An interference pattern is produced.

At position P , which is the same distance from both loudspeakers, there is a maximum.
The next maximum is at position R, where $L_{1} R=5.6 \mathrm{~m}$ and $L_{2} R=5.3 \mathrm{~m}$.
The speed of sound in air is $340 \mathrm{~m} \mathrm{~s}^{-1}$.
The frequency of the sound emitted by the loudspeakers is
A $\quad 8.8 \times 10^{-4} \mathrm{~Hz}$
B $\quad 3.1 \times 10^{1} \mathrm{~Hz}$
C $\quad 1.0 \times 10^{2} \mathrm{~Hz}$
D $\quad 1.1 \times 10^{3} \mathrm{~Hz}$
E $\quad 3.7 \times 10^{3} \mathrm{~Hz}$.
14. An experiment is carried out to measure the wavelength of red light from a laser.

The following values for the wavelength are obtained.
$650 \mathrm{~nm} \quad 640 \mathrm{~nm} \quad 635 \mathrm{~nm} \quad 648 \mathrm{~nm} \quad 655 \mathrm{~nm}$
The mean value for the wavelength and the approximate random uncertainty in the mean is

A $\quad(645 \pm 1) \mathrm{nm}$
B $\quad(645 \pm 4) \mathrm{nm}$
C $\quad(646 \pm 1) \mathrm{nm}$
D $\quad(646 \pm 4) \mathrm{nm}$
E $\quad(3228 \pm 20) \mathrm{nm}$.
15. Red light is used to investigate the critical angle of two materials P and Q.

A student makes the following statements.
I Material P has a higher refractive index than material Q .
II The wavelength of the red light is longer inside material P than inside material Q.
III The red light travels at the same speed inside materials P and Q .

Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E I, II and III
16. The diagram represents some electron transitions between energy levels in an atom.

The radiation emitted with the shortest wavelength is produced by an electron making transition

A E_{1} to E_{0}
B E_{2} to E_{1}
C E_{3} to E_{2}
D E_{3} to E_{1}
E E_{3} to E_{0}.

Back to Table

17. The output from a signal generator is connected to the input terminals of an oscilloscope. The trace observed on the oscilloscope screen, the Y-gain setting and the timebase setting are shown.

The frequency of the signal shown is calculated using the
A timebase setting and the vertical height of the trace
B timebase setting and the horizontal distance between the peaks of the trace
C Y-gain setting and the vertical height of the trace
D \quad-gain setting and the horizontal distance between the peaks of the trace
E \quad-gain setting and the timebase setting.
18. A circuit is set up as shown.

The r.m.s voltage across the lamp is 12 V .
The power produced by the lamp is 24 W .
The peak current in the lamp is
A $\quad 0.71 \mathrm{~A}$
B $\quad 1.4 \mathrm{~A}$
C 2.0 A
D 2.8 A
E $\quad 17 \mathrm{~A}$.

Back to Table

19. A student makes the following statements about energy bands in different materials.

I In metals the highest occupied energy band is not completely full.
II In insulators the highest occupied energy band is full.
III The gap between the valence band and conduction band is smaller in semiconductors than in insulators.

Which of these statements is/are correct?
A I only
B II only
C I and II only
D I and III only
E I, II and III
20. The upward lift force L on the wings of an aircraft is calculated using the relationship

$$
L=\frac{1}{2} \rho v^{2} A C_{L}
$$

where:
ρ is the density of air
v is the speed of the wings through the air
A is the area of the wings
C_{L} is the coefficient of lift.
The weight of a model aircraft is 80.0 N .
The area of the wings on the model aircraft is $3.0 \mathrm{~m}^{2}$.
The coefficient of lift for these wings is 1.6 .
The density of air is $1.29 \mathrm{~kg} \mathrm{~m}^{-3}$
The speed required for the model aircraft to maintain a level flight is
A $\quad 2.5 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 3.6 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 5.1 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 12.9 \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 25.8 \mathrm{~m} \mathrm{~s}^{-1}$.
[END OF SECTION 1. NOW ATTEMPT THE QUESTIONS IN SECTION 2 OF YOUR QUESTION AND ANSWER BOOKLET]

Detailed Marking Instructions for each question
Section 1

Question	Answer	Mark
1.	C	1
2.	B	1
3.	A	1
4.	D	1
5.	C	1
6.	B	1
7.	C	1
8.	E	1
9.	D	1
10.	B	1
11.	A	1
12.	D	1
13.	D	1
14.	D	1
15.	A	1
16.	E	1
17.	B	1
18.	D	1
19.	E	1
20.	C	1

National
Qualifications

Fill in these boxes and read what is printed below.

Full name of centre

Town

Forename(s)

Surname

Number of seat

Date of birth
Day

	Month	Year	Scottish candidate number			
:---	:---	:---	:---	:---	:---	:---

Total marks - 130
SECTION 1 - 20 marks
Attempt ALL questions.
Instructions for the completion of Section 1 are given on Page two.
SECTION 2-110 marks
Attempt ALL questions.
Reference may be made to the Data Sheet on Page two of the question paper X757/76/02 and to the Relationship Sheet X757/76/11.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy. Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

SECTION 2-110 marks

Attempt ALL questions

1. The shot put is an athletics event in which competitors "throw" a shot as far as possible. The shot is a metal ball of mass 4.0 kg . One of the competitors releases the shot at a height of 1.8 m above the ground and at an angle θ to the horizontal. The shot travels through the air and hits the ground at X. The effects of air resistance are negligible.

The graph shows how the release speed of the shot v varies with the angle of projection θ.
release speed $v\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$

1. (continued)

(a) The angle of projection for a particular throw is 40°.
(i) (A) State the release speed of the shot at this angle.
(B) Calculate the horizontal component of the initial velocity of the shot.

Space for working and answer
(C) Calculate the vertical component of the initial velocity of the shot.

Space for working and answer
(ii) The maximum height reached by the shot is 4.7 m above the ground. The time between release and reaching this height is 0.76 s .
(A) Calculate the total time between the shot being released and hitting the ground at X .

Space for working and answer

1. (a) (ii) (continued)
(B) Calculate the range of the shot for this throw.

Space for working and answer
(b) Using information from the graph, explain the effect of increasing the angle of projection on the kinetic energy of the shot at release.

Page 16

Section 2

Question			Answer	Max	Additional Guidance
1.	(a)	(i)	A $\quad v=11.6 \mathrm{~m} \mathrm{~s}^{-1}$	1	Unit required - incorrect or missing unit award 0 Accept m/s No other value accepted.
			$\text { B } \quad \begin{align*} v_{\mathrm{h}} & =11.6 \cos 40 \\ & =8.9 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	1	Or consistent with A Accept $8 \cdot 886,8 \cdot 89,9$ but not $9 \cdot 0$ 0 marks for mixing up B and C
			$\begin{align*} \mathrm{C} \quad v_{\mathrm{v}} & =11.6 \sin 40 \\ & =7.5 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	1	Or consistent with A Accept $7 \cdot 456,7 \cdot 46,7$ but not $7 \cdot 0$
		(ii)	$\begin{align*} \text { A } \quad \begin{aligned} s & =u t+1 / 2 a t^{2} \\ 4 \cdot 7 & =0+1 / 2 \times 9.8 \times t^{2} \\ t & =0.979(\mathrm{~s}) \\ \text { Total Time } & =0.98+0.76 \\ & =1.7 \mathrm{~s} \end{aligned} \tag{1}\\ \tag{1}\\ \tag{1} \end{align*}$	4	s and a must have the same sign $\begin{aligned} v^{2} & =u^{2}+2 a s \\ & =0+2 \times 9 \cdot 8 \times 4 \cdot 7 \\ v & =9 \cdot 6 \\ v & =u+a t \\ 9 \cdot 6 & =0+9 \cdot 8 t \\ t & =0.979 \end{aligned}$ All formulae required to get final answer Correct substitution into all Answer of 0.979 Watch for inappropriate intermediate rounding eg $t=1$, treat as arithmetic error, max 3 marks Accept 2, 1•74, 1.739 but not $2 \cdot 0$ If $g=9 \cdot 81$ or 10 then incorrect substitution, maximum 1 mark for formula NB No secs in physics!

Back to Table

Question	Answer	Max	Additional Guidance
	$\begin{align*} \text { B } \quad & =\frac{d}{t} \tag{1}\\ 8 \cdot 9 & =\frac{d}{1 \cdot 7} \tag{1}\\ d & =15 \mathrm{~m} \tag{1} \end{align*}$	3	$s=u t+\frac{1}{2} a t^{2}$ or $\begin{equation*} s=\frac{1}{2}(u+v) t \tag{1} \end{equation*}$ Or consistent with (a)(ii)(A) and (a)(i)(B) Accept 20, 15•1, 15•13 If $t=1 \cdot 74$ accept $15,15 \cdot 5,15 \cdot 49$
(b)	kinetic energy is less (as θ increases) speed decreases (1)	2	This statement is required before any marks awarded. If there is wrong physics in the answer then award 0 marks Can be done by calculation but it must be clearly indicated which angle applies to which kinetic energy to access the second mark. Wrong substitution in calculation method - award 0 marks (wrong physics) Alternative: (total energy remains the same) The greater the angle the more energy used to lift the putt to a greater height before release (1) Less energy available to convert to $E_{k}(1)$

2. A student sets up an experiment to investigate collisions between two trolleys on a long, horizontal track.

The mass of trolley X is 0.25 kg and the mass of trolley Y is 0.45 kg .
The effects of friction are negligible.
In one experiment, trolley X is moving at $1.2 \mathrm{~m} \mathrm{~s}^{-1}$ to the right and trolley Y is moving at $0.60 \mathrm{~m} \mathrm{~s}^{-1}$ to the left.
The trolleys collide and do not stick together. After the collision, trolley X rebounds with a velocity of $0.80 \mathrm{~m} \mathrm{~s}^{-1}$ to the left.
(a) Determine the velocity of trolley Y after the collision.

Space for working and answer
2. (continued)
(b) The force sensor measures the force acting on trolley Y during the collision.
The laptop displays the following force-time graph for the collision.
force (N)
(i) Determine the magnitude of the impulse on trolley Y .

Space for working and answer
(ii) Determine the magnitude of the change in momentum of trolley X .
2. (b) (continued)
(iii) Sketch a velocity-time graph to show how the velocity of trolley X varies from 0.50 s before the collision to 0.50 s after the collision.
Numerical values are required on both axes.
You may wish to use the square-ruled paper on Page thirty-six.

Question			Answer	Max Mark	Additional Guidance
2.	(a)		(Total momentum before = total momentum after) $\begin{align*} & m_{x} u_{x}+m_{y} u_{y}=m_{x} v_{x}+m_{y} v_{y} \tag{1}\\ & (0 \cdot 25 \times 1 \cdot 20)+(0.45 \times-0 \cdot 60) \\ & =(0 \cdot 25 \times-0.80)+\left(0.45 \times v_{y}\right)(1 \tag{1}\\ & 0 \cdot 30-0 \cdot 27=-0 \cdot 20+0.45 \times v_{y} \\ & 0 \cdot 45 \times v_{y}=0.23 \\ & v_{y}=0.51 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$ (to the right)	3	If sign convention not applied then $\max (1)$ for formula. Answer must be consistent with sign convention in substitution line. $0 \cdot 5,0 \cdot 511,0 \cdot 5111$ Where candidates calculate the momentum of each trolley individually both before and after, no marks are awarded unless correct addition (including sign convention) and equating takes place.
	(b)	(i)	$\begin{align*} & \text { impulse }=\text { area under graph } \\ & \left(\begin{array}{l} \left.=\frac{1}{2} b \times h\right) \\ =\frac{1}{2} \times 0 \cdot 25 \times 4 \cdot 0 \\ =0.50 \mathrm{~N} \mathrm{~s} \end{array}\right. \tag{1} \end{align*}$ Accept $0 \cdot 5,0 \cdot 500,0 \cdot 5000$	3	$\begin{aligned} & \text { Impulse }=m v-m u \\ & =(0.45 \times 0.51)-(0.45 \times-0.60) \\ & \\ & =0.50 \mathrm{~N} \mathrm{~s} \\ & \text { For alternative method accept: } \\ & 0 \cdot 5,0 \cdot 500,0.4995 \\ & \text { Accept } \mathrm{kg} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$
		(ii)	$0.50 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$	1	Or consistent with (i) Accept N s Accept $0 \cdot 5$

Question	Answer	Max Mark	Additional Guidance
(iii)	 Constant velocity at correct values and signs before and after collision Velocity change from initial to final in 0.25 s . Shape of change of velocity correct ie initially gradual, increasing steepness then levelling out to constant velocity.	3	$\underbrace{}_{0.75} \quad{ }^{1.25}$ time (s) The origin and at least one axis must be labelled with quantity or unit or both otherwise maximum 2 marks.

3. A space probe of mass $5.60 \times 10^{3} \mathrm{~kg}$ is in orbit at a height of $3.70 \times 10^{6} \mathrm{~m}$ above the surface of Mars.

Mars

space probe not to scale

The mass of Mars is $6.42 \times 10^{23} \mathrm{~kg}$.
The radius of Mars is $3.39 \times 10^{6} \mathrm{~m}$.
(a) Calculate the gravitational force between the probe and Mars.

Space for working and answer
(b) Calculate the gravitational field strength of Mars at this height. Space for working and answer

Back to Table

Question		Answer	Max Mark	Additional Guidance
3.	(a)	$\begin{align*} & F=\frac{G M m}{r^{2}} \\ & F=\frac{6 \cdot 67 \times 10^{-11} \times 6 \cdot 42 \times 10^{23} \times 5 \cdot 60 \times 10^{3}}{\left(3.39 \times 10^{6}+3.70 \times 10^{6}\right)^{2}} \tag{1} \end{align*}$ $\begin{equation*} F=4.77 \times 10^{3} \mathrm{~N} \tag{1} \end{equation*}$	3	Accept 4•8, 4•770, 4•7704
	(b)	$\begin{align*} & g=\frac{W}{m} \tag{1}\\ & g=\frac{4770}{5600} \tag{1}\\ & g=0.852 \mathrm{~N} \mathrm{~kg}^{-1} \tag{1} \end{align*}$	3	Or consistent with (a) $F=m a$ is acceptable If candidate uses $g=\frac{G M}{r^{2}}$ and has already lost marks in (a) for not adding the radius to the height, do not penalise for a second time. (Gives 3.13) if r is consistent with (a). Accept m s ${ }^{-2}$

4. Light from the Sun is used to produce a visible spectrum.

A student views this spectrum and observes a number of dark lines as shown.

(a) Explain how these dark lines in the spectrum of sunlight are produced.
(b) One of the lines is due to hydrogen.

The position of this hydrogen line in the visible spectrum is shown for a distant galaxy, a nearby galaxy and the Sun.

(i) Explain why the position of the line is different in each of the spectra.
(ii) Show that the redshift of the light from the distant galaxy is 0.098 .

Space for working and answer
(iii) Calculate the approximate distance to the distant galaxy.

Back to Table

Question			Answer		Additional Guidance
4.	(a)		photons of particular/some/ certain energies/frequencies are absorbed in its/the Sun's (upper/outer) atmosphere/outer layers	2	$1^{\text {st }}$ mark stands alone Particular/some/certain frequencies/wavelengths of light/radiation are absorbed (1) 'the atmosphere' is too vague Accept gases or suitable named gases in place of atmosphere but not elements or atoms on their own.
	(b)	(i)	light is redshifted/ shifted towards red (as) the galaxies are moving away (from the Sun)	2	accept: the wavelength (λ) has increased/ frequency (f) has decreased /lines have been redshifted Not 'blueshift'/becomes red/shifted to red - this is wrong physics, award 0 marks. Or further galaxies have greater recessional velocity Or equivalent
		(ii)	$\begin{align*} & z=\frac{\lambda_{\text {observed }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}} \tag{1}\\ & =\frac{450 \times 10^{-9}-410 \times 10^{-9}}{410 \times 10^{-9}} \tag{1}\\ & =0.098 \end{align*}$	2	Must start with the appropriate relationship Accept $\frac{450-410}{410}$ Award maximum of 1 mark if final answer is not 0.098
		(iii)	$\begin{align*} & z=\frac{v}{c} \tag{1}\\ & 0 \cdot 098=\frac{v}{3 \cdot 00 \times 10^{8}} \tag{1}\\ & \left(v=2 \cdot 94 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}\right) \\ & v=H_{0} d \tag{1}\\ & 2 \cdot 94 \times 10^{7}=2 \cdot 3 \times 10^{-18} \times d \tag{1}\\ & d=1 \cdot 3 \times 10^{25} \mathrm{~m} \tag{1}\\ & \left(1 \cdot 4 \times 10^{9} \mathrm{ly}\right) \end{align*}$	5	-anywhere Must use 0.098 otherwise incorrect substitution - max 2 marks -anywhere Accept $1 \times 10^{25}, 1 \cdot 28 \times 10^{25}$, $1 \cdot 278 \times 10^{25}$ There is no need to convert to light years but if done must be correct otherwise max 4 marks.

5. A quote from a well-known science fiction writer states:
"In the beginning there was nothing, which exploded."
Using your knowledge of physics, comment on the above statement.
(b) In July 2012 scientists at CERN announced that they had found a particle that behaved in the way that they expected the Higgs boson to behave. Within a year this particle was confirmed to be a Higgs boson.

This Higgs boson had a mass-energy equivalence of 126 GeV . $\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$
(i) Show that the mass of the Higgs boson is $2.2 \times 10^{-25} \mathrm{~kg}$.

Space for working and answer
(ii) Compare the mass of the Higgs boson with the mass of a proton in terms of orders of magnitude.

Space for working and answer
[Turn over

Page 30
Back to Table

Question			Answer	Max	Additional Guidance
6.	(a)		Photon	1	
	(b)	(i)	$\begin{align*} 126 \mathrm{GeV} & =126 \times 10^{9} \times\left(1 \cdot 6 \times 10^{-19}\right) \tag{1}\\ & =2 \cdot 0 \times 10^{-8}(\mathrm{~J}) \\ E & =m c^{2} \tag{1}\\ 2 \cdot 0 \times 10^{-8} & =m \times\left(3 \times 10^{8}\right)^{2} \tag{1}\\ m= & 2 \cdot 2 \times 10^{-25}(\mathrm{~kg}) \tag{1} \end{align*}$	3	If candidate does not show this line, either separately or in the formula, then max 2 marks may be awarded. -anywhere Alternative: $\begin{gathered} E=m c^{2} \\ 126 \times 10^{9} \times\left(1 \cdot 6 \times 10^{-19}\right)=m \times\left(3 \times 10^{8}\right)^{2} \\ m=2.2 \times 10^{-25}(\mathrm{~kg}) \end{gathered}$ Max 2 marks if final answer not given
		(ii)	$\begin{equation*} \left(2 \cdot 2 \times 10^{-25} / 1 \cdot 673 \times 10^{-27}=\right) 130 \tag{1} \end{equation*}$ (Higgs boson is) $\underline{2}$ orders of magnitude bigger (1)	2	or $10^{-25} / 10^{-27}=100$ or $2.2 \times 10^{-25} / 1.67 \times 10^{-27}=$ or $2.2 \times 10^{-25} / 1.7 \times 10^{-27}=$ or $2.24 \times 10^{-25} / 1.673 \times 10^{-27}=$ etc Accept $100,10^{2}, 132,131 \cdot 5,134$, $133 \cdot 9$, etc If mass of neutron used treat as wrong physics - award 0 marks ' 2 bigger' on its own is worth 2 marks

7. The use of analogies from everyday life can help better understanding of physics concepts. Throwing different balls at a coconut shy to dislodge a coconut is an analogy which can help understanding of the photoelectric effect.

Use your knowledge of physics to comment on this analogy.

Page 32
8. A student investigates how irradiance I varies with distance d from a point source of light.
small lamp

пй metre stick

The distance between a small lamp and a light sensor is measured with a metre stick. The irradiance is measured with a light meter.

The apparatus is set up as shown in a darkened laboratory.
The following results are obtained.

$d(\mathrm{~m})$	0.20	0.30	0.40	0.50
$I\left(\mathrm{Wm}^{-2}\right)$	134.0	60.5	33.6	21.8

(a) State what is meant by the term irradiance.
(b) Use all the data to establish the relationship between irradiance I and
8. (continued)
(c) The lamp is now moved to a distance of 0.60 m from the light sensor. Calculate the irradiance of light from the lamp at this distance.

Space for working and answer
(d) Suggest one way in which the experiment could be improved. You must justify your answer.
(e) The student now replaces the lamp with a different small lamp. The power output of this lamp is 24 W .
Calculate the irradiance of light from this lamp at a distance of 2.0 m .
Space for working and answer

Back to Table

Question		Answer		Additional Guidance
8.	(a)	The power per unit area (incident on a surface)	1	Accept power per square metre (m)
	(b)	$\begin{gather*} 134 \times 0 \cdot 2^{2}=5 \cdot 4 \\ 60 \cdot 5 \times 0 \cdot 3^{2}=5 \cdot 4 \\ 33 \cdot 6 \times 0 \cdot 4^{2}=5 \cdot 4 \\ 21 \cdot 8 \times 0 \cdot 5^{2}=5 \cdot 5 \tag{2} \end{gather*}$ Statement of $I \times d^{2}=$ constant	3	If only 3 sets of data used correctly then maximum 2 marks. If 2 sets of data used correctly then maximum 1 mark (for relationship) If only 1 set of data used award 0 marks. Must be clear how the candidate has used the data to obtain the relationship. Ignore inappropriate averaging in this case. Accept straight line graph proof A sketch graph is not acceptable. 1 mark for all 4 points plotted correctly and best fit line 1 mark for correct axes including scales and labels ie I and $1 / d^{2}$ (ignore units) 1 mark for statement of $I \times d^{2}=$ constant only if some or all data has been used $I \times d^{2}$ is equivalent to $I \propto 1 / d^{2}$ Accept $I_{1} d_{1}^{2}=I_{2} d_{2}^{2}$
	(c)	$\begin{align*} & I \times d^{2}=5 \cdot 4 \tag{1}\\ & I \times 0 \cdot 60^{2}=5 \cdot 4 \tag{1}\\ & I=15 \mathrm{~W} \mathrm{~m}^{-2} \tag{1} \end{align*}$	3	Can use $I_{1} d_{1}{ }^{2}=I_{2} d_{2}{ }^{2}$ Watch for a variation in answers due to data used.

Back to Table

Question	Answer	Max Mark	Additional Guidance
(d)	Smaller lamp (1) Will be more like a point source (1) or Black cloth on bench (1) to reduce reflections (1)	2	Accept Use a more precise instrument to reduce the (absolute) uncertainty. Must provide justification which is not wrong physics, otherwise 0 marks Do not accept 'repeat it' (since there is little variation in the calculated value of the constant/ spread of points from best fit line)
(e)	$\begin{align*} A=4 \pi r^{2} & =4 \pi \times 2^{2}=50 \cdot 265 \\ I & =\frac{P}{A} \tag{1}\\ I & =24 / 50.265 \tag{1}\\ I & =0.48 \mathrm{~W} \mathrm{~m}^{-2} \tag{1} \end{align*}$	4	-anywhere Accept $0 \cdot 5,0 \cdot 477,0 \cdot 4775$

9. A student carries out two experiments to investigate the spectra produced from a ray of white light.
(a) In the first experiment, a ray of white light is incident on a glass prism as shown.
not to scale

(i) Explain why a spectrum is produced in the glass prism.
(ii) The refractive index of the glass for red light is 1.54 .

Calculate the speed of red light in the glass prism.

Space for working and answer
9. (continued)
(b) In the second experiment, a ray of white light is incident on a grating. not to scale

The angle between the central maximum and the second order maximum for red light is $19 \cdot 0^{\circ}$.
The frequency of this red light is $4.57 \times 10^{14} \mathrm{~Hz}$.
(i) Calculate the distance between the slits on this grating.

Space for working and answer
(ii) Explain why the angle to the second order maximum for blue light is different to that for red light.

Back to Table

Question			Answer	Max Mark	Additional Guidance
9.	(a)	(i)	- Different frequencies/ colours have different refractive indices or - Different frequencies/ colours are refracted through different angles	1	Do NOT accept "bending" on its own but ignore it if follows 'refraction' Do not accept ‘different amounts’. Not wavelength or speed on its own but ignore if reference made to frequency or colour. A correct answer followed by 'diffract' or 'defract', 0 marks
		(ii)	$n=\frac{v_{1}}{v_{2}}$ $1 \cdot 54=\frac{3 \cdot 00 \times 10^{8}}{v_{2}}$ $v_{2}=1.95 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	3	Accept 1•9, 1•948, 1•9481 Example of inappropriate intermediate rounding: $\begin{aligned} & n=\frac{\sin \theta_{1}}{\sin \theta_{2}} \\ & 1 \cdot 54=\frac{\sin 42}{\sin \theta_{2}} \\ & \theta_{2}=25 \cdot 75^{\circ}=26^{\circ} \\ & \frac{v_{1}}{v_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}} \\ & \frac{3 \cdot 00 \times 10^{8}}{v_{2}}=\frac{\sin 42}{\sin 26} \\ & v_{2}=2 \cdot 0 \times 10^{8} \mathrm{~ms}^{-1} \\ & (\max 2 \mathrm{marks})^{2} \end{aligned}$

Back to Table

Question		Answer	Max Mark	Additional Guidance
(b)	(i)	$\begin{align*} & v=f \lambda \tag{1}\\ & 3 \cdot 00 \times 10^{8}=4.57 \times 10^{14} \times \lambda \tag{1}\\ & \lambda=656 \cdot 5 \times 10^{-9} \\ & \lambda \lambda=d \sin \theta \tag{1}\\ & m \lambda \times 10^{-9}=d \times \sin 19 \cdot 0 \tag{1}\\ & 2 \times 656 \cdot 5 \times 1.03 \times 10^{-6} \mathrm{~m} \tag{1}\\ & d=4.02 \end{align*}$	5	-anywhere Inappropriate intermediate rounding eg 660, treat as arithmetic error max 4 marks -anywhere Accept 4•0, 4•033, $4 \cdot 0327$ If candidates go on to calculate $1 / \mathrm{d}$ then do not award the final mark for answer
	(ii)	- different colours have different λ - $m \lambda=d \sin \theta$ - (m and d are the same) - θ is different for different λ or - different colours have different λ - Path difference $=m \lambda$ - (for the same m) - PD is different for different λ	3	Any answer using different colours/wavelengths diffract/ refracts different amounts as the explanation is wrong physics, award 0 marks Any answer using wrong physics, award 0 marks. $2 \lambda=d \sin \theta$ is ok Path difference $=2 \lambda$ is ok Can be done by recalculation but must include the first statement else maximum 2 marks.

10. A car battery is connected to an electric motor as shown.

The electric motor requires a large current to operate.
(a) The car battery has an e.m.f. of 12.8 V and an internal resistance r of $6.0 \times 10^{-3} \Omega$. The motor has a resistance of 0.050Ω.
(i) State what is meant by an e.m.f. of $12 \cdot 8 \mathrm{~V}$.
(ii) Calculate the current in the circuit when the motor is operating. Space for working and answer
(iii) Suggest why the connecting wires used in this circuit have a large diameter.
10. (continued)
(b) A technician sets up the following circuit with a different car battery connected to a variable resistor R .

Readings of current I and terminal potential difference V from this circuit are used to produce the following graph.

Page 42
Back to Table
10. (b) (continued)

Use information from the graph to determine:
(i) the e.m.f. of the battery;

Space for working and answer
(ii) the internal resistance of the battery;

MARKS Space for working and answer
10. (b) (continued)
(iii) After being used for some time the e.m.f. of the battery decreases to 11.5 V and the internal resistance increases to 0.090Ω.

The battery is connected to a battery charger of constant e.m.f. 15.0 V and internal resistance of 0.45Ω as shown.

(A) Switch S is closed.

Calculate the initial charging current.
Space for working and answer
(B) Explain why the charging current decreases as the battery charges.

Back to Table

Back to Table

Question		Answer		Max Mark	Additional Guidance
	(iii)	(A)	$\begin{align*} I= & \frac{V}{R} \tag{1}\\ = & \frac{(15-11.5)}{(0.09+0.45)} \tag{1}\\ & (0.09+0.45) \\ = & 6.5 \mathrm{~A} \tag{1} \end{align*}$	3	Accept 6, 6•48, 6.481
		(B)	The e.m.f. of the battery increases (1) Difference between the two e.m.f.s decreases (1)	2	Independent marks Accept voltage or pd in place of emf or equivalent Apply \pm rule

11. A defibrillator is a device that provides a high energy electrical impulse to correct abnormal heart beats.

The diagram shows a simplified version of a defibrillator circuit.

The switch is set to position 1 and the capacitor charges.
(a) Show the charge on the capacitor when it is fully charged is $0 \cdot 16 \mathrm{C}$.

Space for working and answer

11. (continued)

(b) Calculate the maximum energy stored by the capacitor.

Space for working and answer
(c) To provide the electrical impulse required the capacitor is discharged

The initial discharge current through the person is 35.0 A .
(i) Calculate the effective resistance of the part of the person's body between the paddles.

Space for working and answer
11. (c) (continued)
(ii) The graph shows how the current between the paddles varies with time during the discharge of the capacitor.

The effective resistance of the person remains the same during this time.
Explain why the current decreases with time.
(iii) The defibrillator is used on a different person with larger effective resistance. The capacitor is again charged to 2.50 kV .
On the graph in (c)(ii) add a line to show how the current in this person varies with time.
(An additional graph, if required, can be found on Page thirty-eight).

Back to Table

Question		Answer	Max Mark	Additional Guidance 11.		

Question	Answer	Max Mark	Additional Guidance		
		(iii)	Smaller initial current (1) Time to reach 0 A is longer (1)	$\mathbf{2}$	Line must be a curve to award the second mark Line must tend towards the time axis to gain the second mark. Do not worry about areas under the lines being different.

Back to Table

12. A student carries out an investigation to determine the refractive index of a prism.
A ray of monochromatic light passes through the prism as shown.
not to scale

The angle of deviation D is the angle between the direction of the incident ray and the deviated ray.
The student varies the angle of incidence θ and measures the corresponding angles of deviation D.
The results are shown in the table.

Angle of incidence $\theta\left({ }^{\circ}\right)$	Angle of deviation $D\left({ }^{\circ}\right)$
$30 \cdot 0$	$47 \cdot 0$
$40 \cdot 0$	$38 \cdot 1$
$50 \cdot 0$	$37 \cdot 5$
$60 \cdot 0$	$38 \cdot 8$
$70 \cdot 0$	$42 \cdot 5$

(a) Using the square-ruled paper on Page thirty-five, draw a graph of D against θ.
(b) Using your graph state the two values of θ that produce an angle of deviation of $41 \cdot 0^{\circ}$.
(c) Using your graph give an estimate of the minimum angle of deviation D_{m}.
12. (continued)
(d) The refractive index n of the prism can be determined using the relationship.

$$
n \sin \left(\frac{A}{2}\right)=\sin \left(\frac{A+D_{m}}{2}\right)
$$

where $\quad A$ is the angle at the top of the prism, and D_{m} is the minimum angle of deviation.
Use this relationship and your answer to (c) to determine the refractive index of the prism.

Space for working and answer
(e) Using the same apparatus, the student now wishes to determine more precisely the minimum angle of deviation.
Suggest two improvements to the experimental procedure that would achieve this.

Question		Answer	Max Mark	Additional Guidance
12.	(a)	Suitable scales with labels on axes (quantity and units) [Allow for axes starting at zero or broken axes or an appropriate value eg 30°] Correct plotting of points Smooth U shaped curve through these points.	3	Accuracy of plotting should be easily checkable with the scale chosen. If the origin is shown the scale must either be continuous or the axis must be 'broken'. Otherwise maximum 2 marks. Do not penalise if candidates plot θ against D Graphs of sine of angles are incorrect for (a) 0 marks but can still gain marks for rest of question.
	(b)	36° and 66°	1	both required for 1 mark Must be consistent with (a) Allow \pm half box tolerance
	(c)	37°	1	Must be consistent with (a) Allow \pm half box tolerance
	(d)	Correct substitution into equation using D_{m} from answer to (c) (1) Correct value for n (1.5 if using D_{m} equal to 37°)	2	Must be consistent with (c)
	(e)	Repeat measurements More measurements around/ close to a minimum or smaller 'steps' in angle	2	Not: take more measurements Repeat the experiment more times Extend the range

[END OF MARKING INSTRUCTIONS]

Back to Table

X757/76/02

TUESDAY, 24 MAY
9:00 AM - 11:30 AM

Instructions for the completion of Section 1 are given on Page 02 of your question and answer booklet X757/76/01.
Record your answers on the answer grid on Page 03 of your question and answer booklet.
Reference may be made to the Data Sheet on Page 02 of this booklet and to the Relationships Sheet X757/76/11.
Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Back to Table

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value			
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$			
Magnitude of the charge on an electron	e	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$			
Universal Constant of Gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$			
Gravitational acceleration on Earth	g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$			
Hubble's constant						H_{0}	$2.3 \times 10^{-18} \mathrm{~s}^{-1}$	
:---	:---							

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
			Lasers		
			Element	Wavelength/nm	Colour
Sodium	589	Yellow			

PROPERTIES OF SELECTED MATERIALS

Substance	Density $/ \mathrm{kg} \mathrm{m}^{-3}$	Melting Point/K	Boiling Point/K
Aluminium	$2 \cdot 70 \times 10^{3}$	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	$1 \cdot 29$	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Back to Table

SECTION 1-20 marks
Attempt ALL questions

1. A car accelerates uniformly from rest. The car travels a distance of 60 m in 6.0 s . The acceleration of the car is

A $\quad 0.83 \mathrm{~m} \mathrm{~s}^{-2}$
B $\quad 3.3 \mathrm{~m} \mathrm{~s}^{-2}$
C $\quad 5.0 \mathrm{~m} \mathrm{~s}^{-2}$
D $\quad 10 \mathrm{~ms}^{-2}$
E $\quad 20 \mathrm{~ms}^{-2}$.
2. A ball is thrown vertically upwards and falls back to Earth.

Neglecting air resistance, which velocity-time graph represents its motion?
A

D

B

E

C

3. A block of wood slides with a constant velocity down a slope. The slope makes an angle of 30° with the horizontal as shown. The mass of the block is 2.0 kg .

The magnitude of the force of friction acting on the block is
A $\quad 1.0 \mathrm{~N}$
B $\quad 1.7 \mathrm{~N}$
C $\quad 9.8 \mathrm{~N}$
D $\quad 17.0 \mathrm{~N}$
E $\quad 19.6 \mathrm{~N}$.
4. The graph shows the force which acts on an object over a time interval of $8 \cdot 0$ seconds.

The momentum gained by the object during this 8.0 seconds is
A $12 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 32 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
C $44 \mathrm{~kg} \mathrm{~m}^{-1}$
D $\quad 52 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 72 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.
5. A planet orbits a star at a distance of $3.0 \times 10^{9} \mathrm{~m}$.

The star exerts a gravitational force of $1.6 \times 10^{27} \mathrm{~N}$ on the planet.
The mass of the star is $6.0 \times 10^{30} \mathrm{~kg}$.
The mass of the planet is
A $\quad 2.4 \times 10^{14} \mathrm{~kg}$
B $1.2 \times 10^{16} \mathrm{~kg}$
C $3.6 \times 10^{25} \mathrm{~kg}$
D $1.6 \times 10^{26} \mathrm{~kg}$
E $\quad 2.4 \times 10^{37} \mathrm{~kg}$.
6. A car horn emits a sound with a constant frequency of 405 Hz .

The car is travelling away from a student at $28.0 \mathrm{~m} \mathrm{~s}^{-1}$.
The speed of sound in air is $335 \mathrm{~m} \mathrm{~s}^{-1}$.
The frequency of the sound from the horn heard by the student is
A 371 Hz
B 374 Hz
C 405 Hz
D 439 Hz
E 442 Hz .

Back to Table

7. The graphs show how the radiation per unit surface area, R, varies with the wavelength, λ, of the emitted radiation for two stars, P and Q .

A student makes the following conclusions based on the information in the graph.
I Star P is hotter than star Q .
II Star P emits more radiation per unit surface area than star Q .
III The peak intensity of the radiation from star Q is at a shorter wavelength than that from star P.
Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E II and III only
8. One type of hadron consists of two down quarks and one up quark.

The charge on a down quark is $-1 / 3$.
The charge on an up quark is $+2 / 3$.
Which row in the table shows the charge and type for this hadron?

	charge	type of hadron
A	0	baryon
B	+1	baryon
C	-1	meson
D	0	meson
E	+1	meson

9. A student makes the following statements about sub-nuclear particles.

I The force mediating particles are bosons.
II Gluons are the mediating particles of the strong force.
III Photons are the mediating particles of the electromagnetic force.
Which of these statements is/are correct?
A I only
B II only
C I and II only
D II and III only
E I, II and III
10. The last two changes in a radioactive decay series are shown below.

A Bismuth nucleus emits a beta particle and its product, a Polonium nucleus, emits an alpha particle.

$$
{ }_{\mathrm{Q}}^{\mathrm{P}} \mathrm{Bi} \xrightarrow[\text { decay }]{\beta}{ }_{\mathrm{S}}^{\mathrm{R}} \mathrm{PO} \xrightarrow[\text { decay }]{\alpha}{ }_{82}^{208} \mathrm{~Pb}
$$

Which numbers are represented by $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S ?

	P	Q	R	S
A	210	83	208	81
B	210	83	210	84
C	211	85	207	86
D	212	83	212	84
E	212	85	212	84

[Turn over

Back to Table

11. The table below shows the threshold frequency of radiation for photoelectric emission for some metals.

Metal	Threshold frequency (Hz)
sodium	4.4×10^{14}
potassium	5.4×10^{14}
zinc	6.9×10^{14}

Radiation of frequency $6.3 \times 10^{14} \mathrm{~Hz}$ is incident on the surface of each of the metals. Photoelectric emission occurs from

A sodium only
B zinc only
C potassium only
D sodium and potassium only
E zinc and potassium only.
12. Radiation of frequency $9.00 \times 10^{15} \mathrm{~Hz}$ is incident on a clean metal surface.

The maximum kinetic energy of a photoelectron ejected from this surface is $5 \cdot 70 \times 10^{-18} \mathrm{~J}$. The work function of the metal is

A $\quad 2.67 \times 10^{-19} \mathrm{~J}$
B $5.97 \times 10^{-18} \mathrm{~J}$
C $1.17 \times 10^{-17} \mathrm{~J}$
D $\quad 2.07 \times 10^{-2} \mathrm{~J}$
E $\quad 9.60 \times 10^{-1} \mathrm{~J}$.

Back to Table

13. A ray of monochromatic light is incident on a grating as shown.

The wavelength of the light is 633 nm .
The separation of the slits on the grating is
A $1.96 \times 10^{-7} \mathrm{~m}$
B $1.08 \times 10^{-6} \mathrm{~m}$
C $\quad 2.05 \times 10^{-6} \mathrm{~m}$
D $2.15 \times 10^{-6} \mathrm{~m}$
E $4.10 \times 10^{-6} \mathrm{~m}$.
14. Light travels from glass into air.

Which row in the table shows what happens to the speed, frequency and wavelength of the light as it travels from glass into air?

	Speed	Frequency	Wavelength
A	decreases	stays constant	decreases
B	decreases	increases	stays constant
C	stays constant	increases	increases
D	increases	increases	stays constant
E	increases	stays constant	increases

15. The irradiance of light from a point source is $32 \mathrm{Wm}^{-2}$ at a distance of 4.0 m from the source.
The irradiance of the light at a distance of 16 m from the source is
A $\quad 0.125 \mathrm{Wm}^{-2}$
B $\quad 0.50 \mathrm{Wm}^{-2}$
C $\quad 2.0 \mathrm{Wm}^{-2}$
D $\quad 8.0 \mathrm{Wm}^{-2}$
E $\quad 128 \mathrm{Wm}^{-2}$.

Page 9
16. Part of the energy level diagram for an atom is shown

X and Y represent two possible electron transitions.
A student makes the following statements about transitions X and Y .
I Transition Y produces photons of higher frequency than transition X
II Transition X produces photons of longer wavelength than transition Y
III When an electron is in the energy level E_{0}, the atom is ionised.
Which of the statements is/are correct?
A I only
B I and II only
C I and III only
D II and III only
E I, II and III

Back to Table

17. The output of a signal generator is connected to the input of an oscilloscope.

The trace produced on the screen of the oscilloscope is shown.

The timebase control of the oscilloscope is set at $2 \mathrm{~ms} / \mathrm{div}$.
The Y -gain control of the oscilloscope is set at $4 \mathrm{mV} / \mathrm{div}$.
Which row in the table shows the frequency and peak voltage of the output of the signal generator?

	frequency (Hz)	peak voltage (mV)
A	0.5	12
B	0.5	6
C	250	6
D	500	12
E	500	24

18. A potential divider circuit is set up as shown.

The potential difference across the $7.0 \mathrm{k} \Omega$ resistor is
A 3.6 V
B 4.0 V
C 5.1 V
D 8.4 V
E 9.0 V .
19. A circuit is set up as shown.

The resistance of the variable resistor is increased and corresponding readings on the ammeter are recorded.

Resistance (Ω)	2.0	4.0	6.0	8.0
Current (A)	2.0	1.5	1.2	1.0

These results show that as the resistance of the variable resistor increases the power dissipated in the variable resistor

A increases
B decreases
C remains constant
D decreases and then increases
E increases and then decreases.
20. A $20 \mu \mathrm{~F}$ capacitor is connected to a 12 V d.c. supply.

The maximum charge stored on the capacitor is
A $1.4 \times 10^{-3} \mathrm{C}$
B $2.4 \times 10^{-4} \mathrm{C}$
C $\quad 1.2 \times 10^{-4} \mathrm{C}$
D $1.7 \times 10^{-6} \mathrm{C}$
E $\quad 6.0 \times 10^{-7} \mathrm{C}$.

Marking Instructions for each question

Section 1

Question	Answer	Max Mark
1.	B	1
2.	A	1
3.	C	1
4.	C	1
5.	C	1
6.	B	1
7.	C	1
8.	A	1
9.	E	1
10.	D	1
11.	D	1
12.	A	1
13.	C	1
14.	E	1
15.	C	1
16.	B	1
17.	D	1
18.	D	1
19.	E	1
20.	B	1

National

 Qualifications

Fill in these boxes and read what is printed below.

Full name of centre

\square

Surname

Number of seat

Date of birth
Day

Month	Year	Scottish candidate number						
:---	:---	:---	:---	:---	:---	:---	:---	:---

Total marks - 130
SECTION 1 - 20 marks
Attempt ALL questions.
Instructions for the completion of Section 1 are given on Page 02.

SECTION 2 - 110 marks

Attempt ALL questions.
Reference may be made to the Data Sheet on Page 02 of the question paper X757/76/02 and to the Relationships Sheet X757/76/11.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Back to Table

SECTION 2-110 marks
Attempt ALL questions
1.

An athlete takes part in a long jump competition. The athlete takes off from point P with an initial velocity of $9 \cdot 1 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 24° to the horizontal and lands at point Q .
(a) Calculate:
(i) the vertical component of the initial velocity of the athlete;

Space for working and answer
(ii) the horizontal component of the initial velocity of the athlete.

Space for working and answer

1. (continued)

(b) Show that the time taken for the athlete to travel from P to Q is 0.76 s .

Space for working and answer
(c) Calculate the horizontal displacement s_{h} between points P and Q . Space for working and answer
(d) The graph shows how the horizontal displacement of the athlete varies with time for this jump when air resistance is ignored.

Add a line to the graph to show how the horizontal displacement of the athlete varies with time when air resistance is taken into account.
(An additional graph, if required can be found on Page 38)

Section 2

2. A student uses the apparatus shown to investigate the force of friction between the wheels of a toy car and a carpet.

The toy car is released from rest, from a height h. It then travels down the ramp and along the carpet before coming to rest. The student measures the distance d that the car travels along the carpet.
The student repeats the procedure several times and records the following measurements and uncertainties.

Mass of car, $m:(0.20 \pm 0.01) \mathrm{kg}$
Height, $h:(0.40 \pm 0.005) \mathrm{m}$
Distance, $d: 1.31 \mathrm{~m} \quad 1.40 \mathrm{~m} \quad 1.38 \mathrm{~m} \quad 1.41 \mathrm{~m} \quad 1.35 \mathrm{~m}$
(a) (i) Calculate the mean distance d travelled by the car.

Space for working and answer
(ii) Calculate the approximate random uncertainty in this value.
2. (continued)
(b) Determine which of the quantities; mass m, height h or mean distance d, has the largest percentage uncertainty.
You must justify your answer by calculation.
Space for working and answer
(c) (i) Calculate the potential energy of the toy car at height h.

An uncertainty in this value is not required.
2. (c) (continued)
(ii) Calculate the average force of friction acting between the toy car and carpet, as the car comes to rest.
An uncertainty in this value is not required.
Space for working and answer
(iii) State one assumption you have made in (c) (ii).

Back to Table

Question			Answer		Additional Guidance
2.	(c)	(ii)	$\begin{align*} & E_{w}=F d \tag{1}\\ & 0.78=F \times 1.37 \tag{1}\\ & F=0.57 \mathrm{~N} \tag{1} \end{align*}$	3	Or consistent with (a)(i) and (c)(i) Sig figs: Accept 0.6, 0.569, 0.5693 Candidates can arrive at this answer by alternative methods eg equating loss in E_{P} to gain in E_{K} etc. If alternative methods used, can also accept $0.572,0.5723$ 1 for ALL equations 1 for ALL substitutions 1 for correct answer
		(iii)	All E_{ρ} converted to E_{k} All E_{p} converted to E_{W} Air resistance is negligible Ramp is frictionless Bearings in the wheels are frictionless The carpet is horizontal No energy/heat loss on the ramp etc	1	Only one correct statement required Note the \pm rule applies Energy is conserved on its own OR No energy/ heat loss on its own - 0 marks

3. The following apparatus is set up to investigate the law of conservation of linear momentum.

In one experiment, vehicle X is travelling to the right along the track and vehicle Y is travelling to the left along the track.
The vehicles collide and stick together.
The computer displays the speeds of each vehicle before the collision.
The following data are recorded:

$$
\begin{aligned}
& \text { Mass of vehicle } X=0.85 \mathrm{~kg} \\
& \text { Mass of vehicle } Y=0.25 \mathrm{~kg} \\
& \text { Speed of vehicle } X \text { before the collision }=0.55 \mathrm{~m} \mathrm{~s}^{-1} \\
& \text { Speed of vehicle } Y \text { before the collision }=0.30 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

(a) State the law of conservation of linear momentum.
(b) Calculate the velocity of the vehicles immediately after the collision.

Back to Table

3. (continued)

(c) Show by calculation that the collision is inelastic. Space for working and answer
(c) Show by calculation that the collision in inelastic.

Question		Answer		Additional Guidance
3.	(a)	Total momentum before (a collision) is equal to the total momentum after (a collision) in the absence of external forces (1)	1	Not: TMB = TMA An isolated system is equivalent to the absence of external forces
	(b)	$\begin{align*} & m_{1} u_{1}+m_{2} u_{2}=\left(m_{1}+u_{2}\right) v \tag{1}\\ & (0.85 \times 0 \cdot 55)+(0.25 \times-0.3) \\ & =(0.25+0.85) v \tag{1}\\ & v=0.36 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Sign of the answer must be consistent with the substitution of + and - velocities. Sig figs: Accept $0 \cdot 4,0 \cdot 357,0.3568$ If candidate then goes on to state a direction which is not consistent with their substitution then maximum two marks can be awarded. Where candidates calculate the momentum of each trolley individually both before and after, no marks are awarded unless correct addition (including sign convention) and equating takes place.
	(c)	$\begin{equation*} E_{\mathrm{k}}=1 / 2 m v^{2} \quad \text { ANYWHERE } \tag{1} \end{equation*}$ Before $E_{k}=1 / 2 m_{X} v_{X}^{2}+1 / 2 m_{Y} v_{Y}^{2}$ $\begin{align*} = & \left(1 / 2 \times 0 \cdot 85 \times 0 \cdot 55^{2}\right) \\ & +\left(1 / 2 \times 0 \cdot 25 \times 0 \cdot 3^{2}\right) \\ = & 0 \cdot 14(\mathrm{~J}) \tag{1} \end{align*}$ After $E_{k}=1 / 2 m v^{2}$ $\begin{equation*} =1 / 2 \times 1 \cdot 1 \times 0.36^{2}=0.071 \tag{J} \end{equation*}$ Kinetic energy is lost. (Therefore inelastic.)	4	Or consistent with (b) 1 mark for both substitutions If candidate answers 0.49 in (b), this gives 0.13 J for E_{K} after. E_{K} before $\neq E_{K}$ after is insufficient

4. Two physics students are in an airport building on their way to visit CERN.
(a) The first student steps onto a moving walkway, which is travelling at $0.83 \mathrm{~m} \mathrm{~s}^{-1}$ relative to the building. This student walks along the walkway at a speed of $1.20 \mathrm{~m} \mathrm{~s}^{-1}$ relative to the walkway.
The second student walks alongside the walkway at a speed of $1.80 \mathrm{~m} \mathrm{~s}^{-1}$ relative to the building.

Determine the speed of the first student relative to the second student. Space for working and answer
Space formorn and

Back to Table

4. (continued)

(b) On the plane, the students discuss the possibility of travelling at relativistic speeds.
(i) The students consider the plane travelling at $0.8 c$ relative to a stationary observer. The plane emits a beam of light towards the observer.

State the speed of the emitted light as measured by the observer.
Justify your answer.
(ii) According to the manufacturer, the length of the plane is 71 m .

Calculate the length of the plane travelling at 0.8 c as measured by the stationary observer.
Space for working and answer
(iii) One of the students states that the clocks on board the plane will run slower when the plane is travelling at relativistic speeds.
Explain whether or not this statement is correct.

Question			Answer		Additional Guidance
4.	(a)		$\begin{align*} & (0 \cdot 83+1 \cdot 20)-1 \cdot 80 \tag{1}\\ & 0 \cdot 23 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	2	
	(b)	(i)	$\begin{equation*} 3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \text { or } c \tag{1} \end{equation*}$ Speed of light is the same for all observers / all (inertial) frames of reference or equivalent	2	Look for this statement first - if incorrect then 0 marks. $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ or c on its own is worth 1 mark If the numerical value for speed is given, then unit is requiredotherwise 0 marks Any wrong physics in justification then maximum 1 mark for the statement
		(ii)	$\begin{align*} & l^{\prime}=l \sqrt{1-\left(\frac{v}{c}\right)^{2}} \tag{1}\\ & l=71 \sqrt{1-0 \cdot 8^{2}} \tag{1}\\ & l=43 \mathrm{~m} \tag{1} \end{align*}$	3	Sig figs: Accept 40, 42•6, 42•60
		(iii)	Correct - from the perspective of the stationary observer there will be time dilation Incorrect - from the perspective of the students they are in the same frame of reference as the clock Not possible to say/could be both correct and incorrect - frame of reference has not been defined	1	The response must involve a statement referring to, or implying, a frame of reference

5. (a) A student is using an elastic band to model the expansion of the Universe.

One end of the band is fixed in a clamp stand at V . Knots are tied in the band to represent galaxies. The knots are at regular intervals of $0 \cdot 10 \mathrm{~m}$, at points W, X and Y as shown.

The other end of the elastic band is pulled slowly for 2.5 seconds, so that the band stretches. The knots are now in the positions shown below.

Page 30
5. (a) (continued)
(i) Complete the table to show the average speeds of the knots X and Y .

Knot	Average speed $\left(\mathrm{m} \mathrm{s}^{-1}\right)$
W	0.008
X	
Y	

Space for working
(ii) Explain why this model is a good simulation of the expansion of the Universe.

5. (continued)

(b) When viewed from the Earth, the continuous emission spectrum from the Sun has a number of dark lines. One of these lines is at a wavelength of 656 nm .

In the spectrum of light from a distant galaxy, the corresponding dark line is observed at 667 nm .
Calculate the redshift of the light from the distant galaxy.
Space for working and answer

Question	Answer	Max Mark	Additional Guidance

5.	(a)	(i)	$\begin{align*} \Delta X & =0.04(\mathrm{~m}) \\ X & =0.016\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \tag{1}\\ \Delta Y & =0.06\left(\mathrm{~m}^{2}\right. \\ Y & =0.024\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \tag{1} \end{align*}$	2	If values are not entered in the table, then X and Y must be identified and units required.
		(ii)	More distant galaxies are moving away at a greater velocity/ have a greater recessional velocity Or equivalent	1	The (average) speed (of the knots) is (directly) proportional to the distance (from V) Any reference to planets or stars alone - 0 marks
	(b)		$\begin{align*} & z=\frac{\lambda_{\text {observed }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}} \tag{1}\\ & z=\frac{667 \times 10^{-9}-656 \times 10^{-9}}{656 \times 10^{-9}} \tag{1}\\ & z=0 \cdot 0168 \tag{1} \end{align*}$	3	Sig figs: Accept 0.017, 0.01677, 0.016768 Accept $z=\frac{667-656}{656}$

6. A website states "Atoms are like tiny solar systems with electrons orbiting a nucleus like the planets orbit the Sun".
Use your knowledge of physics to comment on this statement.
7. An experiment is set up to investigate the behaviour of electrons in electric fields.
(a) Electrons are accelerated from rest between the cathode and the anode by a potential difference of 2.0 kV .
Calculate the kinetic energy gained by each electron as it reaches the anode. Space for working and answer
(b) The electrons then pass between the two parallel metal plates.

The electron beam current is 8.0 mA .
Determine the number of electrons passing between the metal plates in one minute.

Space for working and answer

Back to Table

7. (continued)

(c) The switch S is now closed.

The potential difference between the metal plates is 250 V .
The path of the electron beam between the metal plates is shown.

Complete the diagram to show the electric field pattern between the two metal plates.
(An additional diagram, if required, can be found on Page 38.)
[Turn over

Question		Answer	Max	Additional Guidance
7.	(a)	$\begin{align*} W & =Q V \tag{1}\\ & =1 \cdot 6 \times 10^{-19} \times 2000 \tag{1}\\ & =3 \cdot 2 \times 10^{-16} \mathrm{~J} \tag{1} \end{align*}$	3	Sig figs: Accept 3×10^{-16}, $\begin{gathered} 3 \cdot 20 \times 10^{-16}, \\ 3 \cdot 200 \times 10^{-16}, \end{gathered}$ Ignore negative sign for charge.
	(b)	$\begin{align*} Q & =I t \tag{1}\\ & =0 \cdot 008 \times 60 \tag{1}\\ & =0 \cdot 48(C) \tag{1} \end{align*}$ $\begin{align*} \text { number } & =\frac{0.48}{1 \cdot 6 \times 10^{-19}} \\ & =3 \cdot 0 \times 10^{18} \tag{1} \end{align*}$	4	Sig figs: Accept 3×10^{18} If the response stops at 0.48 then a correct unit is required. Candidates can arrive at this answer by alternative methods eg $P=I V$ and $E=P t$ OR $\mathrm{Q}=$ It to calculate the time for 1 electron.
	(c)	Straight lines with arrows pointing downwards.	1	spacing should be approximately equal (ignore end effect) Field lines must start and finish on the plates Lines at right angles to the plates

8. The diagram shows part of an experimental fusion reactor.

The following statement represents a reaction that takes place inside the reactor.

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{0}^{1} \mathrm{n}
$$

The masses of the particles involved in the reaction are shown in the table.

Particle	Mass (kg)
${ }_{1}^{2} \mathrm{H}$	3.3436×10^{-27}
${ }_{1}^{3} \mathrm{H}$	5.0083×10^{-27}
${ }_{2}^{4} \mathrm{He}$	6.6465×10^{-27}
${ }_{0}^{1} \mathrm{n}$	1.6749×10^{-27}

(a) Explain why energy is released in this reaction.
(b) Calculate the energy released in this reaction.

Back to Table

8. (continued)

(c) Magnetic fields are used to contain the plasma inside the fusion reactor.

Explain why it is necessary to use a magnetic field to contain the plasma.
(d) The plasma consists of charged particles. A positively charged particle enters a region of the magnetic field as shown.

Determine the direction of the force exerted by the magnetic field on the positively charged particle as it enters the field.

Back to Table

Question		Answer		Additional Guidance
8.	(a)	mass is converted into energy	1	There must be a link between mass and energy. Mass is lost on its own - 0 marks Mass defect is wrong physics - 0 marks Energy is released or equivalent is not sufficient.
	(b)	$\begin{aligned} m_{\text {before }} & =3.3436 \times 10^{-27}+5.0083 \times 10^{-27} \\ & =8.3519 \times 10^{-27}(\mathrm{~kg}) \\ m_{\text {affer }} & =6.6465 \times 10^{-27}+1.6749 \times 10^{-27} \\ & =8.3214 \times 10^{-27}(\mathrm{~kg}) \end{aligned}$ $\begin{equation*} \Delta m=3 \cdot 0500 \times 10^{-29}(\mathrm{~kg}) \tag{1} \end{equation*}$ $\begin{align*} E & =m c^{2} \tag{1}\\ & =3 \cdot 0500 \times 10^{-29} \times\left(3 \cdot 00 \times 10^{8}\right)^{2} \tag{1}\\ & =2 \cdot 75 \times 10^{-12} \mathrm{~J} \tag{1} \end{align*}$	4	$E=m c^{2}$ anywhere - 1 mark. If mass before and after not used to 5 significant figures from table then stop marking maximum 1 mark for formula Arithmetic mistake can be carried forward Truncation error in mass before and/or mass after- maximum 1 mark for formula Sig figs: $2 \cdot 7,2 \cdot 745,2 \cdot 7450$ If finding $E=m c^{2}$ for each particle, then $\begin{equation*} E=m c^{2} \tag{1} \end{equation*}$ All substitutions Subtraction Final answer
	(c)	Plasma would cool down if it came too close to the sides (and reaction would stop)	1	(Reaction requires very high temperature), so plasma would melt the sides of the reactor OR High temperature plasma could damage/ destroy the container
	(d)	Up the page	1	Accept up and upwards Arrow drawn pointing up the page is acceptable If upwards arrow is drawn on the original diagram, it must be on the left hand edge The path of the particle on its own is not acceptable

9. A student carries out an experiment to measure the wavelength of microwave radiation. Microwaves pass through two gaps between metal plates as shown.

As the detector is moved from A to B, a series of maxima and minima are detected.
(a) The microwaves passing through the gaps are coherent.

State what is meant by the term coherent.
(b) Explain, in terms of waves, how a maximum is produced.
(c) The measurements of the distance from each gap to the second order maximum are shown in the diagram above.

Calculate the wavelength of the microwaves.
Space for working and answer
(d) The distance separating the two gaps is now increased.

State what happens to the path difference to the second order maximum.
Justify your answer.

Back to Table

Question		Answer		Additional Guidance
9.	(a)	The waves from the two sources have a constant phase relationship (and have the same frequency, wavelength, and velocity).	1	"In phase" is not sufficient
	(b)	Waves meet in phase OR Crest meets crest OR Trough meets trough OR Path difference $=\mathrm{m} \lambda$	1	Accept peak for crest Can be shown by diagram eg $A Q+A B=A A G$ Diagram must imply addition of two waves in phase
	(c)	$\begin{equation*} \text { Path Difference }=m \lambda \tag{1} \end{equation*}$ $\begin{equation*} 0 \cdot 282-0 \cdot 204=2 \times \lambda \tag{1} \end{equation*}$ $\begin{array}{r} \lambda=0.0390 \mathrm{~m} \tag{1}\\ \quad(39 \mathrm{~mm}) \end{array}$	3	Sig figs: 0.039 m 0.03900 m 0.039000 m Not: 0.04 m
	(d)	The path difference stays the same OR The path difference is still 2λ (1) because the wavelength has not changed	2	Look for this statement first - if incorrect then 0 marks. The path difference stays the same OR The path difference is still 2λ on its own - 1 mark Any wrong physics in justification then maximum 1 mark (for the statement)

10. Retroflective materials reflect light to enhance the visibility of clothing.

One type of retroflective material is made from small glass spheres partially embedded in a silver-coloured surface that reflects light.
A ray of monochromatic light follows the path shown as it enters one of the glass spheres.

(a) Calculate the refractive index of the glass for this light.

Space for working and answer

Back to Table

10. (continued)
(b) Calculate the critical angle for this light in the glass.

Space for working and answer
(c) The light is reflected at point P.

Complete the diagram below to show the path of the ray as it passes through the sphere and emerges into the air.

(An additional diagram, if required, can be found on Page 38.)

Back to Table

Question		Answer		Max	Additional Guidance
10.	(a)	$\begin{aligned} n & =\sin i / \sin r \\ & =\sin 36 / \sin 18 \\ & =1.9 \end{aligned}$	(1) (1) (1)	3	Sig figs: Accept 2, 1•90, 1.902
	(b)	$\begin{aligned} \sin \theta_{\mathrm{C}} & =1 / n \\ & =1 / 1 \cdot 9 \\ & =0.5263 \\ \theta_{\mathrm{C}} & =32^{\circ} \end{aligned}$	(1) (1) (1)	3	Or consistent with 10(a).
	(c)	Completed diagr emerging (appro the incident ray	ght lel to	1	The normal is not required

11. A student is describing how the following circuit works.

The student states:
"The electricity comes out of the battery with energy and flows through the resistor using up some of the energy, it then goes through the LED and the rest of the energy is changed into light waves."
Use your knowledge of physics to comment on this statement.
12. A technician sets up a circuit as shown, using a car battery and two identical lamps.
The battery has an e.m.f. of 12.8 V and an internal resistance of $0 \cdot 10 \Omega$.

(a) Switch S is open. The reading on the ammeter is 1.80 A .
(i) Determine the reading on the voltmeter.

Space for working and answer
(ii) Switch S is now closed.

State the effect this has on the reading on the voltmeter. Justify your answer.
(b) Some cars use LEDs in place of filament lamps.

An LED is made from semiconductor material that has been doped with impurities to create a p-n junction.
The diagram represents the band structure of an LED.

(i) A voltage is applied across an LED so that it is forward biased and emits light.
Using band theory, explain how the LED emits light.

Page 49
(ii) The energy gap between the valence band and conduction band is known as the band gap.
The band gap for the LED is $3.03 \times 10^{-19} \mathrm{~J}$
(A) Calculate the wavelength of the light emitted by the LED. Space for working and answer
(B) Determine the colour of the light emitted by the LED.

Question			Answer		Additional Guidance
12.	(a)	(i)	$\begin{align*} & V=I R \tag{1}\\ & V=1 \cdot 80(4 \cdot 8+0 \cdot 10) \tag{1}\\ & V=8 \cdot 82(\mathrm{~V}) \tag{1}\\ & \text { Voltmeter reading }(=12 \cdot 8-8 \cdot 82) \\ & =4.0 \mathrm{~V} \tag{1} \end{align*}$	4	$\begin{aligned} & \text { lost volts }=I r \\ & \text { lost volts }=1 \cdot 80 \times 0 \cdot 10 \\ & \text { lost volts }=0 \cdot 18 \mathrm{~V} \\ & V=I R \\ & V=1 \cdot 80 \times 4 \cdot 8 \\ & V=8 \cdot 64 \mathrm{~V} \\ & V=12 \cdot 8-0 \cdot 18-8 \cdot 64 \\ & V=4 \cdot 0 \mathrm{~V} \end{aligned}$ OR $\begin{aligned} & E=V+I r \\ & 12 \cdot 8=V+(1 \cdot 80 \times 0 \cdot 10) \\ & V=12 \cdot 62 \mathrm{~V} \\ & V=I R \\ & V=1 \cdot 80 \times 4 \cdot 8 \\ & V=8 \cdot 64 \mathrm{~V} \\ & V=12 \cdot 62-8 \cdot 64 \\ & V=4 \cdot 0 \mathrm{~V} \end{aligned}$ 1 for all equations 1 for all substitutions 1 for all correct intermediate values 1 for final answer Sig figs: Accept 4, 3.98, 3.980
		(ii)	(Reading on voltmeter)/(voltage across lamp) decreases (total) resistance decreases/ current increases. lost volts increases $/ V_{\text {tpd }}$ decreases/p.d. across $4 \cdot 8 \Omega$ increases/share of p.d. across parallel branch decreases	3	Look for this statement first - if incorrect then 0 marks. 'Reading on voltmeter decreases' on its own is worth 1 mark Any wrong physics in justification then maximum 1 mark for the statement Last 2 marks are independent of each other Can be justified by calculation ($R_{\text {lamp }}$ is $2 \cdot 2 \Omega, I=2 \cdot 1 \mathrm{~A}$, gives $V=2.3 \mathrm{~V}$)

Question			Answer		Additional Guidance
12.	(b)	(i)	(Voltage applied causes) electrons to move towards conduction band of p-type/ away from n-type (towards the junction) Electrons move/ drop from conduction band to valence band Photon emitted (when electron drops)	3	Look for reference to either conduction or valence band first. Otherwise 0 marks. Bands must be named correctly in first two marking point eg not valency and not conductive Any answer using recombination of holes and electrons on its own, with no reference to band theory, is worth 0 marks. Must be directional Any wrong physics eg holes move up (from valence band to conduction band)- 0 marks This mark is dependent upon having at least one of the first two statements
		(ii) (A)	$\begin{gather*} E=h f \\ 3 \cdot 03 \times 10^{-19}=6 \cdot 63 \times 10^{-34} \times f \tag{1}\\ f=4.57 \times 10^{14}(\mathrm{~Hz}) \tag{1}\\ v=f \lambda(1) \text { for both equations } \\ 3 \times 10^{8}=4 \cdot 57 \times 10^{14} \times \lambda \tag{1}\\ \lambda=6 \cdot 56 \times 10^{-7} \mathrm{~m} \tag{1} \end{gather*}$	4	Alternative: $E=\frac{h c}{\lambda}$ Correct substitution (1 for E and $h ; 1$ for c) Final value of λ Sig figs: $\begin{gathered} \text { Accept } 6.6 \times 10^{-7} \\ 6.564 \times 10^{-7} \\ 6.5644 \times 10^{-7} \end{gathered}$
		(ii) (B)	Red (1)	1	or consistent with (A) If wavelength stated in this part, then colour must be consistent with this value

Back to Table

13. A technician sets up a circuit as shown.

The power supply has negligible internal resistance.
(a) The capacitor is initially uncharged.

The switch is moved to position P and the capacitor charges.
(i) State the potential difference across the capacitor when it is fully charged.
(ii) Calculate the maximum energy stored by the capacitor.

Space for working and answer
(c) The technician replaces the 150 mF capacitor with a capacitor of capacitance 47 mF .

The switch is moved to position P and the capacitor is fully charged.
The switch is now moved to position Q .
State the effect that this change has on the time the lamp stays lit. You must justify your answer.
(b) The switch is now moved back to position Q . Determine the maximum discharge current in the circuit.

Back to Table

Question			Answer		Additional Guidance
13.	(a)	(i)	12 V	1	Accept 12.0 V
		(ii)	$\begin{align*} & \mathrm{E}=1 / 2 \mathrm{C} \mathrm{~V}^{2} \tag{1}\\ & \mathrm{E}=1 / 2 \times 150 \times 10^{-3} \times 12^{2} \tag{1}\\ & \mathrm{E}=11 \mathrm{~J} \tag{1} \end{align*}$	3	Or consistent with a(i) Sig figs: 10 J 10.8 J 10.80 J $Q=C V$ and $E=\frac{1}{2} Q V$ OR $Q=C V$ and $E=\frac{1}{2} \frac{Q^{2}}{C}$ Both substitutions Final answer
	(b)		$\begin{align*} \left(R_{\mathrm{T}}\right. & =56+19=75(\Omega)) \tag{1}\\ I & =\frac{V}{R} \tag{1}\\ I & =\frac{12}{75} \tag{1}\\ I & =0 \cdot 16 \mathrm{~A} \tag{1} \end{align*}$	3	Or consistent with a(i) Candidates can arrive at this answer by alternative methods. Sig figs: 0.2 A 0.160 A 0.1600 A
	(c)		(Lamp stays lit for a) shorter time (as smaller capacitance results in) less energy stored / less charge stored	2	Look for this first Must provide relevant justification which is not wrong physics. If wrong physics - 0 marks. E is less because $E=1 / 2 C V^{2}$ is acceptable. If candidate says the current stays the same, they must identify it is the initial current.

14. A student investigates the factors affecting the frequency of sound produced by a vibrating guitar string.
The guitar string is stretched over two supports and is made to vibrate as shown.

The frequency f of the sound produced by the vibrating string is given by the relationship

$$
f=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}
$$

where $\quad T$ is the tension in the string
L is the distance between the supports
μ is the mass per unit length of the string.
(a) The tension in the string is 49.0 N and the mass per unit length of the string is $4.00 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{-1}$.
The distance between the supports is 0.550 m .
Calculate the frequency f of the sound produced.
Space for working and answer

Back to Table

14. (continued)

(b) The guitar string in part (a) is replaced by a different guitar string.

A student varies the tension T and measures the frequency f of the sound produced by the new guitar string.
The student records the following information.

$T(\mathrm{~N})$	$\sqrt{T}\left(\mathrm{~N}^{1 / 2}\right)$	$f(\mathrm{~Hz})$
10	3.2	162
15	3.9	190
20	4.5	220
25	5.0	254
30	5.5	273

(i) Using the square-ruled paper on Page 36, draw a graph of f against \sqrt{T}
(ii) Use your graph to determine the frequency of the sound produced when the tension in the guitar string is 22 N .

Back to Table

Question			Answer		Additional Guidance
14.	(a)		$\begin{align*} f & =\frac{1}{2 L} \sqrt{\frac{T}{\mu}} \\ & =\frac{1}{2 \times 0 \cdot 550} \quad \sqrt{\frac{49 \cdot 0}{4 \cdot 00 \times 10^{-4}}} \tag{1}\\ & =318 \mathrm{~Hz} \tag{1} \end{align*}$	2	Substitution (1) Answer (1) Sig figs: Accept 320, 318.2, $318 \cdot 18$
	(b)	(i)	Suitable scales with labels on axes (quantity and units) [Allow for axes starting at zero or broken axes or an appropriate value] Points plotted correctly Best-fit straight line	3	If the origin is shown the scale must either be continuous or the axis must be 'broken'. Otherwise maximum 2 marks. If an invalid scale is used on either axis eg values from the table are used as the scale points - 0 marks Do not penalise if candidates plot \sqrt{T} against f Graphs of T and f are incorrect for (b)(i) - 0 marks, but can still gain marks for $\mathrm{b}(\mathrm{ii})$.
		(ii)	230 Hz	1	Must be consistent with the candidate's graph in (b)(i) ($\sqrt{22}=4.7$ gives) 230 Hz Correct value of \sqrt{T} must be used If f against T is drawn in $b(i)$, then this mark can still be accessed. If values from table are used as the scale points - 0 marks

[END OF MARKING INSTRUCTIONS]

Back to Table

X757/76/02

WEDNESDAY, 17 MAY
9:00 AM - 11:30 AM

Instructions for the completion of Section 1 are given on Page 02 of your question and answer booklet X757/76/01.
Record your answers on the answer grid on Page 03 of your question and answer booklet.
Reference may be made to the Data Sheet on Page 02 of this booklet and to the Relationships Sheet X757/76/11.
Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Back to Table

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Magnitude of the charge on an electron Universal Constant of Gravitation Gravitational acceleration on Earth Hubble's constant	g	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
			Lasers		
			Element	Wavelength/nm	Colour
Sodium	589	Yellow			

PROPERTIES OF SELECTED MATERIALS

Substance	Density $/ \mathrm{kg} \mathrm{m}^{-3}$	Melting Point/K	Boiling Point/K
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

SECTION 1 - 20 marks

Attempt ALL questions

1. The graph shows how the velocity of an object varies with time.

The acceleration of the object is
A $\quad 0.83 \mathrm{~m} \mathrm{~s}^{-2}$
B $\quad 1.2 \mathrm{~m} \mathrm{~s}^{-2}$
C $\quad 2.5 \mathrm{~m} \mathrm{~s}^{-2}$
D $\quad 5.0 \mathrm{~m} \mathrm{~s}^{-2}$
E $\quad 6.0 \mathrm{~m} \mathrm{~s}^{-2}$.
2. A block is resting on a horizontal surface.

A force of 24 N is now applied as shown and the block slides along the surface.

The mass of the block is 20 kg .
The acceleration of the block is $0.20 \mathrm{~m} \mathrm{~s}^{-2}$.
The force of friction acting on the block is
A $\quad 4.0 \mathrm{~N}$
B $\quad 8.0 \mathrm{~N}$
C $\quad 12 \mathrm{~N}$
D $\quad 16 \mathrm{~N}$
E $\quad 25 \mathrm{~N}$.

Back to Table

3. The graph shows how the vertical speed of a skydiver varies with time.

A student uses information from the graph to make the following statements.
I The acceleration of the skydiver is greatest between P and Q .
II The air resistance acting on the skydiver between Q and R is less than the weight of the skydiver.
III The forces acting on the skydiver are balanced between R and S .
Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E I , II and III
4. A spacecraft is travelling at a constant speed of $2.75 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ relative to a planet.

A technician on the spacecraft measures the length of the spacecraft as 125 m .
An observer on the planet measures the length of the spacecraft as
A 36 m
B $\quad 50 \mathrm{~m}$
C 124 m
D 314 m
E 433 m .

Back to Table

5. A galaxy has a recessional velocity of $0 \cdot 30 c$.

Hubble's Law predicts that the distance between Earth and this galaxy is
A $\quad 1.3 \times 10^{17} \mathrm{~m}$
B $\quad 3.9 \times 10^{25} \mathrm{~m}$
C $\quad 1.3 \times 10^{26} \mathrm{~m}$
D $1.4 \times 10^{41} \mathrm{~m}$
E $\quad 4.5 \times 10^{42} \mathrm{~m}$.
6. Measurements of the expansion rate of the Universe lead to the conclusion that the rate of expansion is increasing.
Present theory proposes that this is due to
A redshift
B dark matter
C dark energy
D the gravitational force
E cosmic microwave background radiation.
7. A student makes the following statements about the radiation emitted by stellar objects.

I Stellar objects emit radiation over a wide range of frequencies.
II The peak wavelength of radiation is longer for hotter objects than for cooler objects.
III At all frequencies, hotter objects emit more radiation per unit surface area per unit time than cooler objects.
Which of these statements is/are correct?
A I only
B III only
C I and II only
D I and III only
E I, II and III

Back to Table

8. The following statement represents a nuclear reaction.

$$
{ }_{103}^{256} \mathrm{Lr} \rightarrow \mathrm{Z}+{ }_{2}^{4} \mathrm{He}
$$

Nucleus Z is
A $\quad{ }_{101}^{252} \mathrm{Md}$
B $\quad{ }_{101}^{252} \mathrm{No}$
C $\quad{ }_{101}^{256} \mathrm{Md}$
D $\quad{ }_{105}^{260} \mathrm{Db}$
E $\quad{ }_{103}^{252} \mathrm{Lr}$.
9. Radiation is incident on a clean zinc plate causing photoelectrons to be emitted.

The source of radiation is replaced with one emitting radiation of a higher frequency.
The irradiance of the radiation incident on the plate remains unchanged.
Which row in the table shows the effect of this change on the maximum kinetic energy of a photoelectron and the number of photoelectrons emitted per second?

	Maximum kinetic energy of a photoelectron	Number of photoelectrons emitted per second
A	no change	no change
B	no change	increases
C	increases	no change
D	increases	decreases
E	decreases	increases

Back to Table

10. Ultraviolet radiation of frequency $7.70 \times 10^{14} \mathrm{~Hz}$ is incident on the surface of a metal. Photoelectrons are emitted from the surface of the metal.
The maximum kinetic energy of an emitted photoelectron is $2.67 \times 10^{-19} \mathrm{~J}$.
The work function of the metal is
A $\quad 1.07 \times 10^{-19} \mathrm{~J}$
B $\quad 2.44 \times 10^{-19} \mathrm{~J}$
C $\quad 2.67 \times 10^{-19} \mathrm{~J}$
D $5.11 \times 10^{-19} \mathrm{~J}$
E $\quad 7.78 \times 10^{-19} \mathrm{~J}$.
11. A student makes the following statements about waves from coherent sources.

I Waves from coherent sources have the same velocity.
II Waves from coherent sources have the same wavelength.
III Waves from coherent sources have a constant phase relationship.
Which of these statements is/are correct?
A I only
B II only
C I and II only
D I and III only
E I, II and III
12. A ray of red light passes from a liquid to a transparent solid.

The solid and the liquid have the same refractive index for this light.
Which row in the table shows what happens to the speed and wavelength of the light as it passes from the liquid into the solid?

	Speed	Wavelength
A	decreases	decreases
B	decreases	increases
C	no change	increases
D	increases	no change
E	no change	no change

13. A ray of blue light passes from air into a transparent block as shown.

The speed of this light in the block is
A $1.80 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 1.96 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 2.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
D $2.23 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 2.65 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.

Back to Table

14. A student carries out an experiment to investigate how irradiance varies with distance.

A small lamp is placed at a distance d away from a light meter. The irradiance I at this distance is displayed on the meter. This measurement is repeated for a range of different distances.
The student uses these results to produce the graph shown.

The graph indicates that there is a systematic uncertainty in this experiment.
Which of the following would be most likely to reduce the systematic uncertainty in this experiment?

A Repeating the readings and calculating mean values.
B Replacing the small lamp with a larger lamp.
C Decreasing the brightness of the lamp.
D Repeating the experiment in a darkened room.
E Increasing the range of distances.
15. A point source of light is 8.00 m away from a surface. The irradiance, due to the point source, at the surface is $50.0 \mathrm{~mW} \mathrm{~m}^{-2}$. The point source is now moved to a distance of 12.0 m from the surface.

The irradiance, due to the point source, at the surface is now
A $\quad 22.2 \mathrm{~mW} \mathrm{~m}^{-2}$
B $\quad 26.0 \mathrm{~mW} \mathrm{~m}^{-2}$
C $\quad 33.3 \mathrm{~mW} \mathrm{~m}^{-2}$
D $\quad 75.0 \mathrm{~mW} \mathrm{~m}^{-2}$
E $\quad 267 \mathrm{~mW} \mathrm{~m}^{-2}$.

Back to Table

16. The output from an a.c. power supply is connected to an oscilloscope. The trace seen on the oscilloscope screen is shown.

The Y -gain setting on the oscilloscope is $1.0 \mathrm{~V} / \mathrm{div}$.
The r.m.s. voltage of the power supply is
A 2.1 V
B 3.0 V
C 4.0 V
D 4.2 V
E 6.0 V .
17. $\mathrm{A} 20 \mu \mathrm{~F}$ capacitor is connected to a 12 V d.c. supply.

The maximum charge stored on the capacitor is
A $\quad 1.4 \times 10^{-3} \mathrm{C}$
B $2.4 \times 10^{-4} \mathrm{C}$
C $\quad 1.4 \times 10^{-4} \mathrm{C}$
D $1.7 \times 10^{-6} \mathrm{C}$
E $\quad 6.0 \times 10^{-7} \mathrm{C}$.

Back to Table

18. A circuit containing a capacitor is set up as shown.

The supply has negligible internal resistance.
The maximum energy stored in the capacitor is
A $5.4 \times 10^{-4} \mathrm{~J}$
B $3.5 \times 10^{-4} \mathrm{~J}$
C $1.4 \times 10^{-4} \mathrm{~J}$
D $3.4 \times 10^{-5} \mathrm{~J}$
E $\quad 2 \cdot 2 \times 10^{-5} \mathrm{~J}$.
19. A student makes the following statements about conductors, insulators and semiconductors.

I In conductors, the conduction band is completely filled with electrons.
II In insulators, the gap between the valence band and the conduction band is large.
III In semiconductors, increasing the temperature increases the conductivity.
Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E II and III only

Back to Table

20. Astronomers use the following relationship to determine the distance, d, to a star.

$$
F=\frac{L}{4 \pi d^{2}}
$$

For a particular star the following measurements are recorded:
apparent brightness, $F=4.4 \times 10^{-10} \mathrm{Wm}^{-2}$
luminosity, $L=6.1 \times 10^{30} \mathrm{~W}$
Based on this information, the distance to this star is
A $3.3 \times 10^{19} \mathrm{~m}$
B $\quad 1.5 \times 10^{21} \mathrm{~m}$
C $\quad 3.7 \times 10^{36} \mathrm{~m}$
D $\quad 1.1 \times 10^{39} \mathrm{~m}$
E $\quad 3.9 \times 10^{39} \mathrm{~m}$.
[END OF SECTION 1. NOW ATTEMPT THE QUESTIONS IN SECTION 2 OF YOUR QUESTION AND ANSWER BOOKLET]

Marking instructions for each question
Section 1

Question	Answer	Max mark
1.	A	1
2.	B	1
3.	C	1
4.	B	1
5.	B	1
6.	C	1
7.	D	1
8.	A	1
9.	D	1
10.	B	1
11.	E	1
12.	E	1
13.	D	1
14.	D	1
15.	A	1
16.	A	1
17.	B	1
18.	E	1
19.	E	1
20.	A	1

National

X757/76/01

Physics Section 1 - Answer Grid and Section 2

WEDNESDAY, 17 MAY
9:00 AM - 11:30 AM

Fill in these boxes and read what is printed below.

Full name of centre

Town
\square

Surname

Number of seat

Date of birth

Total marks - 130
SECTION 1 - 20 marks
Attempt ALL questions.
Instructions for the completion of Section 1 are given on Page 02.

SECTION 2 - 110 marks

Attempt ALL questions.
Reference may be made to the Data Sheet on Page 02 of the question paper X757/76/02 and to the Relationship Sheet X757/76/11.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Back to Table

SECTION 2-110 marks
Attempt ALL questions

1. A student is on a stationary train.

The train now accelerates along a straight level track.
The student uses an app on a phone to measure the acceleration of the train.
(a) The train accelerates uniformly at $0.32 \mathrm{~m} \mathrm{~s}^{-2}$ for 25 seconds.
(i) State what is meant by an acceleration of $0.32 \mathrm{~m} \mathrm{~s}^{-2}$.
(ii) Calculate the distance travelled by the train in the 25 seconds.

Space for working and answer

1. (continued)

(b) Later in the journey, the train is travelling at a constant speed as it approaches a bridge.

A horn on the train emits sound of frequency 270 Hz .
The frequency of the sound heard by a person standing on the bridge is 290 Hz .

The speed of sound in air is $340 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Calculate the speed of the train.

Space for working and answer
(ii) The train continues to sound its horn as it passes under the bridge. Explain why the frequency of the sound heard by the person standing on the bridge decreases as the train passes under the bridge and then moves away.
You may wish to use a diagram.

Section 2

Question			Answer	Max	Additional guidance
1.	(a)	(i)	The velocity increases by $0.32 \mathrm{~m} \mathrm{~s}^{-1}$ each/per second	1	Accept: Speed increases by ... Rate of change of velocity/speed is ... Train gets faster by ... Velocity/speed changes by ...
		(ii)	$\begin{align*} & s=u t+\frac{1}{2} a t^{2} \tag{1}\\ & s=((0 \times 25))+\left(0.5 \times 0.32 \times 25^{2}\right) \tag{1}\\ & s=100 \mathrm{~m} \tag{1} \end{align*}$	3	Accept: $\begin{aligned} & v=u+a t \\ & v=(0)+0 \cdot 32 \times 25 \\ & v=8\left(\mathrm{~ms}^{-1}\right) \\ & v^{2}=u^{2}+2 a s \\ & 8^{2}=\left(0^{2}\right)+(2 \times 0 \cdot 32 \times s) \\ & s=100 \mathrm{~m} \end{aligned}$ OR $\begin{aligned} & s=\frac{1}{2}(u+v) t \text { or } s=\bar{v} t \\ & s=\frac{1}{2}((0)+8) \times 25 \\ & s=100 \mathrm{~m} \end{aligned}$ Note: 1 mark for ALL equations 1 mark for ALL substitutions 1 mark for correct answer
	(b)	(i)	$\begin{align*} & f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \tag{1}\\ & 290=270\left(\frac{340}{340-v_{s}}\right) \tag{1}\\ & v_{s}=23 \mathrm{~ms}^{-1} \tag{1} \end{align*}$	3	$f_{o}=f_{s}\left(\frac{v}{v-v_{s}}\right)$ is also acceptable Accept 20, 23•4, 23•45
		(ii)	Statement that there are fewer wavefronts per second. OR The wavefronts are further apart OR The wavelength increases OR diagram showing wavefronts closer together ahead of the train and further apart behind it. or any similar response	1	In a diagram, there must be an implication of direction of travel. Do Not Accept Any answer that implies that the frequency/wavelength of the horn itself is changing.

2. A white snooker ball and a black snooker ball travel towards each other in a straight line.
The white ball and the black ball each have a mass of 0.180 kg .
Just before the balls collide head-on, the white ball is travelling at $2.60 \mathrm{~m} \mathrm{~s}^{-1}$ to the right and the black ball is travelling at $1.80 \mathrm{~m} \mathrm{~s}^{-1}$ to the left.

After the collision, the black ball rebounds with a velocity of $2.38 \mathrm{~m} \mathrm{~s}^{-1}$ to the right.
(a) (i) Determine the velocity of the white ball immediately after the collision.

Space for working and answer
(ii) The collision between the balls is inelastic. State what is meant by an inelastic collision.
2. (continued)
(b) A student carries out an experiment to measure the average force exerted by a cue on a ball.

The cue hits the stationary ball.
The timer records the time the cue is in contact with the ball.
The computer displays the speed of the ball.
The results are shown.
Time of contact between the cue and the ball $=(0.040 \pm 0.001) \mathrm{s}$
Speed of the ball immediately after contact $=(0.84 \pm 0.01) \mathrm{m} \mathrm{s}^{-1}$
Mass of the ball $=(0.180 \pm 0.001) \mathrm{kg}$
(i) Calculate the average force exerted on the ball by the cue. An uncertainty in this value is not required.
Space for working and answer
(ii) Determine the percentage uncertainty in the value for the average force on the ball.

Space for working and answer

Back to Table

Question			Answer	Max mark	Additional guidance
2.	(a)	(i)	(total momentum before = total momentum after) $\begin{align*} & m_{x} u_{x}+m_{y} u_{y}=m_{x} v_{x}+m_{y} v_{y} \tag{1}\\ & (0 \cdot 180 \times 2 \cdot 60)+(0.180 \times-1.80) \\ & =\left(0.180 v_{x}+0.180 \times 2 \cdot 38\right) \tag{1}\\ & 0.468-0.324=0.180 v_{x}+0.4284 \\ & v_{x}=-1.58 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$ (Accept ' $1.58 \mathrm{~ms}^{-1}$ to the left' or an indication of direction eg arrow left)	3	1 mark for equating the momentums before and after. 1 mark for the substitutions. 1 mark for answer including unit. Signs must be consistent. Allow cancellation of masses throughout the relationship. Accept $v_{x}=-1.58 \mathrm{~ms}^{-1}$ to the left as "loose" use of direction. Sig fig $1 \cdot 6,1 \cdot 580,1 \cdot 5800$
		(ii)	kinetic energy is lost/greater before the collision than after.	1	Do not accept: E_{k} before $\neq \mathrm{E}_{\mathrm{k}}$ after. E_{k} is not conserved.
	(b)	(i)	$\begin{align*} & F t=m v-m u \\ & F \times 0.040=(0.180 \times 0.84)-(0.180 \times 0) \tag{1}\\ & F=3.8 \mathrm{~N} \tag{1} \end{align*}$	3	Accept: $\begin{aligned} & a=\frac{v-u}{t} \\ & a=\frac{0 \cdot 84(-0)}{0 \cdot 040} \\ & a=21\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \\ & F=m a \\ & F=0 \cdot 180 \times 21 \\ & F=3 \cdot 8 \mathrm{~N} \end{aligned}$ Sig figs $4,3 \cdot 78,3 \cdot 780$ Note: 1 mark for ALL equations 1 mark for ALL substitutions 1 mark for correct answer Ignore any uncertainty calculations within this question.
		(ii)	$\begin{align*} & \left(\frac{0.01}{0.84} \times 100=1.2\right) \\ & \left(\frac{0.001}{0.180} \times 100=0.56\right) \\ & \frac{0.001}{0.040} \times 100(=2.5) \tag{1} \end{align*}$ (Uncertainty in F is) 2•5\%	2	1 mark for correct or implied working for \% uncertainty in t . 1 mark for indicating $2 \cdot 5 \%$ as the largest. Must have \% in final answer equivalent to 'unit'. Accept: 3\%

Back to Table

3. A ball is thrown vertically upwards.

The ball is above the ground when released.

ground

The graph shows how the vertical velocity of the ball varies with time from the instant it is released until just before it hits the ground.

The effects of air resistance can be ignored.
(a) (i) Calculate the time taken for the ball to reach its maximum height. 3 Space for working and answer
3. (a) (continued)
(ii) Calculate the distance the ball falls from its maximum height to the ground.

Space for working and answer
(b) The ball is now thrown vertically upwards from the same height with a greater initial vertical velocity.
Add a line to the graph below to show how the vertical velocity of the ball varies with time from the instant it is released until just before it hits the ground.
The effects of air resistance can be ignored.
Additional numerical values on the axes are not required.

(An additional graph, if required, can be found on Page 39.)

Back to Table

Question			Answer	Max mark	Additional guidance
3.	(a)	(i)	$v=u+a t$ 1 $0=5 \cdot 6+(-9 \cdot 8) t$ 1 $t=0.57 \mathrm{~s}$ 1	3	u and a must have opposite signs Accept $0=5 \cdot 6-9 \cdot 8 t$ Accept 0.6, 0.571, 0.5714 Alternative method: $\begin{aligned} & v^{2}=u^{2}+2 a s \\ & 0^{2}=5 \cdot 6^{2}+2 \times(-9 \cdot 8) \times s \\ & s=1.6(\mathrm{~m}) \\ & \mathrm{s}=\frac{1}{2}(u+v) t \\ & 1 \cdot 6=\left(\frac{5 \cdot 6+0}{2}\right) t \\ & t=0.57 \mathrm{~s} \end{aligned}$ If an alternative method is used, 1 mark for ALL equations 1 mark for ALL substitutions 1 mark for correct answer If candidate answers question in terms of an object falling from the max height and reaching a velocity of $5 \cdot 6 \mathrm{~ms}^{-1}$, then a suitable justification MUST be given to allow access to $2^{\text {nd }}$ and $3^{\text {rd }}$ marks. A negative value for time is wrong physics - max 1 mark.

Back to Table

Question			Answer		Max mark	Additional guidance
3.	(a)	(ii)	$\begin{aligned} & v^{2}=u^{2}+2 a s \\ & (-7.7)^{2}=0^{2}+2 \times(-9.8) s \\ & s=-3.0 \mathrm{~m} \\ & \text { (Distance }=3.0 \mathrm{~m} \text {) } \end{aligned}$	1 1 1	3	v and a must have the same sign and calculated value of s must agree with sign convention used. Accept 3, 3.03, 3.025 Alternative method: $\begin{aligned} & m g h=\frac{1}{2} m v^{2} \\ & g h=\frac{1}{2} v^{2} \\ & 9 \cdot 8 \times h=\frac{1}{2} \times 7 \cdot 7^{2} \\ & h=3 \cdot 0 \mathrm{~m} \end{aligned}$ If an alternative method is used, 1 mark for ALL equations 1 mark for ALL substitutions 1 mark for correct answer
	(b)		Starting point greater than $5 \cdot 6$ Final point beyond -7•7 Acceptably parallel line		3	Independent marks Must be one continuous acceptably straight line for third mark.

4. Some motorways have variable speed limits, with overhead information boards displaying the maximum speed allowed. This system is designed to keep the traffic flowing and to avoid congestion.

In this system, the flow of traffic is observed and the maximum speed to be displayed is determined using

$$
\text { speed }=\text { frequency } \times \text { wavelength }
$$

Use your knowledge of physics to comment on this system for determining the maximum speed to be displayed.

Back to Table

5. Planets outside our solar system are called exoplanets.

An exoplanet of mass $5.69 \times 10^{27} \mathrm{~kg}$ orbits a star of mass $3.83 \times 10^{30} \mathrm{~kg}$.

(a) (i) Compare the mass of the star with the mass of the exoplanet in terms of orders of magnitude.

Space for working and answer
(ii) The distance between the exoplanet and the star is $3.14 \times 10^{11} \mathrm{~m}$. Calculate the gravitational force between the star and the exoplanet.

Back to Table

5. (continued)

(b) The gravitational force between the star and the exoplanet causes the star to follow a circular path as the exoplanet orbits the star. Small differences in the wavelength of the light from the star are observed on Earth.

Light from the star is redshifted when the star moves away from the Earth and blueshifted when the star moves towards the Earth.

(i) Calculate the redshift of light from the star observed on Earth when the star is moving away from the Earth at $6.60 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$.
Space for working and answer
(ii) For an exoplanet of greater mass at the same distance from the star, suggest whether the radius of the circular path followed by the star would be greater than, less than, or the same as that for an exoplanet of smaller mass.

Back to Table

Question			Answer	Max mark	Additional guidance
5.	(a)	(i)	$\begin{align*} & \left(\frac{3 \cdot 83 \times 10^{30}}{5 \cdot 69 \times 10^{27}}\right)=673 \tag{1}\\ & \text { (Star is) } \\ & 3 \text { (orders of magnitude) greater } \\ & \text { OR } \\ & \begin{array}{l} \text { Exoplanet is } 3 \text { (orders of magnitude) } \\ \underline{\text { Smaller }} \end{array} \\ & \hline \end{align*}$	2	Sig figs: accept 670, 673•1, 673•11 Or $\left(\frac{10^{30}}{10^{27}}\right)=1000 \text { or } 10^{3}$ Or $(30-27)=3$ '3 greater' on its own is worth 2 marks. Care should be taken where candidates answer by the reciprocal method - 2 marks are still available. $\left(\frac{5 \cdot 69 \times 10^{27}}{3 \cdot 83 \times 10^{30}}\right)=1.49 \times 10^{-3}$ Comparison statement 'Greater' on its own - 0 marks
		(ii)	$\begin{aligned} & F=G \frac{m_{1} m_{2}}{r^{2}} \\ & F=6.67 \times 10^{-11} \frac{5.69 \times 10^{27} \times 3.83 \times 10^{30}}{\left(3.14 \times 10^{11}\right)^{2}} 1 \\ & F=1.47 \times 10^{25} \mathrm{~N} \end{aligned}$	3	Sig figs: Accept $1.5,1.474,1.4743$
	(b)	(i)	$\begin{aligned} & z=\frac{v}{c} \\ & z=\frac{6 \cdot 60 \times 10^{3}}{3.00 \times 10^{8}} \\ & z=2.20 \times 10^{-5} \end{aligned}$	3	Sig figs: Accept 2•2, 2•200, 2•2000
		(ii)	Greater (than)	1	Accept any word synonymous with 'greater'. Any correct suggestion followed by wrong physics 0 marks.

6. The visible spectrum of light emitted by a star is observed to contain a number of dark lines. The dark lines occur because certain wavelengths of light are absorbed when light passes through atoms in the star's outer atmosphere.

The diagram shows some of the energy levels for a hydrogen atom.

$$
\begin{aligned}
& \mathrm{E}_{3} \longrightarrow-1.36 \times 10^{-19} \mathrm{~J} \\
& \mathrm{E}_{2} \longrightarrow-2.42 \times 10^{-19} \mathrm{~J} \\
& \mathrm{E}_{1} \longrightarrow-5.42 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

$$
\mathrm{E}_{0}
$$

(a) For the energy levels shown in the diagram, identify the electron transition that would lead to the absorption of a photon with the highest frequency.
(b) An electron makes the transition from energy level E_{1} to E_{3}. Determine the frequency of the photon absorbed.

Back to Table

Question		Answer	Max mark	Additional guidance
6.	(a)	$\begin{array}{\|l} E_{0} \text { to } E_{3} \\ E_{0} \rightarrow E_{3} \\ \text { Between } E_{0} \text { and } E_{3} \end{array}$	1	Could be shown by an arrow on the diagram showing the correct upwards transition. Direction must be correct. Do not accept: $\mathrm{E}_{0}-\mathrm{E}_{3}$ Between E_{3} and E_{0}
	(b)	$\begin{aligned} & E_{2}-E_{1}=h f \\ & -1.36 \times 10^{-19}-\left(-5.42 \times 10^{-19}\right) \\ & =6.63 \times 10^{-34} \times f \\ & f=6.12 \times 10^{14} \mathrm{~Hz} \end{aligned}$	3	Sig figs: Accept 6•1, 6•124, 6•1237 Accept: $(\Delta) E=h f$ or $E_{3}-E_{1}=h f$ for formula mark $\begin{aligned} & 5.42 \times 10^{-19}-1.36 \times 10^{-19} \\ & =6.63 \times 10^{-34} \times f \end{aligned}$ for substitution mark Note: Correct $\Delta E=4.06 \times 10^{-19}(J)$ $1.36 \times 10^{-19}-5.42 \times 10^{-19}$ for $\Delta \mathrm{E}$, maximum 1 mark for a correct formula.

7. The following diagram gives information on the Standard Model of fundamental particles.

(a) Explain why the proton and the neutron are not fundamental particles.
(b) An extract from a data book contains the following information about three types of sigma (Σ) particles. Sigma particles are made up of three quarks.

Particle	Symbol	Quark Content	Charge	Mean lifetime (s)
sigma plus	Σ^{+}	up up strange	$+1 e$	8.0×10^{-11}
neutral sigma	Σ^{0}	up down strange	0	7.4×10^{-20}
sigma minus	Σ^{-}	down down strange	$-1 e$	1.5×10^{-10}

(i) A student makes the following statement.

All baryons are hadrons, but not all hadrons are baryons.
Explain why this statement is correct.
(ii) The charge on an up quark is $+\frac{2}{3} e$.

Determine the charge on a strange quark.
Space for working and answer
7. (continued)
(c) (i) State the name of the force that holds the quarks together in the sigma (Σ) particle.
(ii) State the name of the boson associated with this force.
(d) Sigma minus $\left(\Sigma^{-}\right)$particles have a mean lifetime of $1.5 \times 10^{-10} \mathrm{~s}$ in their frame of reference.
Σ^{-}are produced in a particle accelerator and travel at a speed of 0.9 c relative to a stationary observer.
Calculate the mean lifetime of the Σ^{-}particle as measured by this observer.
Space for working and answer

Back to Table

Question			Answer	Max mark	Additional guidance
7.	(a)		They are composed of other particles/quarks, (fundamental particles are not).	1	Accept they are composite particles.
	(b)	(i)	Baryons are (hadrons as they are) composed of (three) quarks. Mesons/some hadrons are made from a quark - anti-quark pair so are not baryons.	2	For first mark, a correct statement that baryons consist of quarks. For second mark, a correct statement that there are other hadrons that have a different quark-count from baryons. Accept two quarks in place of quark-anti-quark pair.
		(ii)	$-1 / 3(e)$	1	
	(c)	(i)	strong (nuclear force)	1	
		(ii)	gluon	1	Or consistent with (c)(i). A carry forward mark is only accessible if one of the four fundamental forces is identified in (c)(i).
	(d)		$\begin{aligned} & \mathrm{t}^{\prime}=\frac{t}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \\ & \mathrm{t}^{\prime}=\frac{1.5 \times 10^{-10}}{\sqrt{1-\frac{(0 \cdot 9 c)^{2}}{c^{2}}}} \\ & \mathrm{t}^{\prime}=3.4 \times 10^{-10} \mathrm{~s} \end{aligned}$	3	Accept: 3, 3.44, 3.441 Accept: $\frac{1.5 \times 10^{-10}}{\sqrt{1-0.9^{2}}}$

8. X-ray machines are used in hospitals.

An X-ray machine contains a linear accelerator that is used to accelerate electrons towards a metal target.
The linear accelerator consists of hollow metal tubes placed in a vacuum.

Electrons are accelerated across the gaps between the tubes by an alternating supply.
(a) (i) Calculate the work done on an electron as it accelerates from P to Q. 3
Space for working and answer
(ii) Explain why an alternating supply is used in the linear accelerator.

8. (continued)

(b) The electron beam is then passed into a "slalom magnet" beam guide. The function of the beam guide is to direct the electrons towards a metal target.
Inside the beam guides R and S , two different magnetic fields act on the electrons.

Electrons strike the metal target to produce high energy photons of radiation.

(i) Determine the direction of the magnetic field inside beam guide R .
(ii) State two differences between the magnetic fields inside beam guides R and S .
(c) Calculate the minimum speed of an electron that will produce a photon of energy $4.16 \times 10^{-17} \mathrm{~J}$.
Space for working and answer

Back to Table

Question			Answer	Max mark	Additional guidance
8.	(a)	(i)	$\begin{array}{ll} \mathrm{W} \text { or } \mathrm{E}_{\mathrm{W}}=\mathrm{QV} & 1 \\ =1.60 \times 10^{-19} \times 2.50 \times 10^{3} & 1 \\ =4.00 \times 10^{-16} \mathrm{~J} & 1 \end{array}$	3	Suspend significant figure rule and accept $4 \times 10^{-16} \mathrm{~J}$. Ignore negative sign for charge.
		(ii)	Particle (always) accelerates in the same direction/forwards OR Force on particle/electron is always in same direction OR Ensure the direction of the electric field is correct when particle/ electron passes between (alternate) gaps	1	Candidate must make some implication of 'same direction'.
	(b)	(i)	Out of page	1	Do not accept: 'upwards' on its own, OR 'out of the page' with other comments such ad 'circular' 'clockwise'.
		(ii)	(Magnetic fields are in) opposite directions (Magnetic field in) S is stronger than (field in) R	2	Independent marks Or consistent with (b)(i) for first mark as long as a linear field is described. Accept statement referring to direction of (magnetic field in) S alone ONLY if (b)(i) has been answered. Do not accept: 'different directions' 'force in S is opposite to force in R' alone.
	(c)		$\begin{aligned} & \mathrm{E}_{K}=\frac{1}{2} m v^{2} \\ & 4 \cdot 16 \times 10^{-17}=\frac{1}{2} \times 9.11 \times 10^{-31} \times v^{2} \\ & 1 \\ & v=9.56 \times 10^{6} \mathrm{~ms}^{-1} \end{aligned}$	3	Accept: 9.6, 9.557, 9.5566

9. A diagram from a 'How Things Work' website contains information about a nuclear fusion reaction.

Reaction of helium- 3 with deuterium

(a) State what is meant by the term nuclear fusion.
9. (continued)
(b) The following statement represents this fusion reaction.

$$
{ }_{2}^{3} \mathrm{He}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{1} \mathrm{p}
$$

The mass of the particles involved in the reaction are shown in the table.

Particle	Mass (kg)
${ }_{2}^{3} \mathrm{He}$	5.008×10^{-27}
${ }_{1}^{2} \mathrm{H}$	3.344×10^{-27}
${ }_{2}^{4} \mathrm{He}$	6.646×10^{-27}
${ }_{1}^{1} \mathrm{p}$	1.673×10^{-27}

(i) Explain why energy is released in this reaction.
(ii) Determine the energy released in this reaction.

Space for working and answer

Back to Table

Question			Answer	Max mark	Additional guidance
9.	(a)		(Two) small nuclei combine to form a larger nucleus	1	Accept: 'light' and 'heavy'. Accept: 'fuse’, ‘join' Do not accept: Atoms/molecules/particles/ isotopes/elements. Do not accept: 'react' in place of 'combine' or equivalent of 'combining'.
	(b)	(i)	(Some) mass (is lost and) converted to energy	1	There must be an indication of mass being converted (or an equivalent term) to energy e.g. transformed, becomes, changed to etc... Do not accept: transferred... Mass is lost on its own - 0 marks. Mass defect is wrong physics - 0 marks.

Back to Table

Question			Answer	Max mark	Additional guidance
9.	(b)	(ii)	Mass before: $\begin{aligned} 5.008 \times 10^{-27}+3.344 & \times 10^{-27} \\ = & 8.352 \times 10^{-27} \end{aligned}$ Mass after: $\begin{array}{rl} 6 \cdot 646 \times 10^{-27}+1 & .673 \times 10^{-27} \\ = & 8.319 \times 10^{-27} \end{array}$ $\begin{array}{ll} \text { Mass "lost": } & 1 \\ 0.033 \times 10^{-27}(\mathrm{~kg}) & 1 \\ E=m c^{2} & 1 \\ E=0.033 \times 10^{-27} \times\left(3.00 \times 10^{8}\right)^{2} & 1 \\ E=2.97 \times 10^{-12} \mathrm{~J} & 1 \end{array}$	4	$E=m c^{2}$ anywhere, 1 mark. Accept: 3.0, 2.970, 2.9700 Do not accept 3. Check for correct substitutions of values in calculation of mass "lost". If values are incorrect, maximum 1 mark for formula, even if final answer is correct. If mass before and after not used to 4 significant figures from table then stop marking maximum 1 mark for formula. Ignore inappropriate reference to mass defect. Arithmetic mistake can be carried forward. Truncation error in mass before and/or mass after - maximum 1 mark for formula. If finding $E=m c^{2}$ for each particle, then $E=m c^{2}$ All substitutions Subtraction Final answer

10. An experiment is carried out to determine the wavelength of light from a laser.

(a) Explain, in terms of waves, how a maximum is formed.
(b) The experiment is carried out with four gratings.

The separation of the slits d is different for each grating.
The angle between the central maximum and the first order maximum θ, produced by each grating, is measured.
The results are used to produce a graph of $\sin \theta$ against $\frac{1}{d}$.

10. (b) (continued)
(i) Determine the wavelength of the light from the laser used in this experiment.
Space for working and answer
(ii) Determine the angle θ produced when a grating with a spacing d of $2.0 \times 10^{-6} \mathrm{~m}$ is used with this laser.
Space for working and answer
(c) Suggest two improvements that could be made to the experiment to improve reliability.

Back to Table

Question			Answer	Max mark	Additional guidance
10.	(a)		Waves meet in phase OR Crest meets crest OR Trough meets trough OR Path difference $=m \lambda$	1	Accept 'peak' for 'crest'. Can be shown by diagram: $a n+m b=A A D$ Do not accept 'join' or 'merge' alone.
	(b)	(i)	statement that $\lambda=$ gradient or link λ to the gradient subs to calculate gradient $\lambda=4.8 \times 10^{-7} \mathrm{~m}$	3	Acceptable range using the 'gradient' method, 4.7 to $5 \cdot 0 \times 10^{-7} \mathrm{~m}$, but intermediate steps still need to be checked. If any of the plotted points on the graph (' x ') are used, then maximum 1 for formula. $m \lambda=d \sin \theta$ Accept : $\lambda=d \sin \theta$ in this case Subs of values from line $\quad 1$ $\lambda=4 \cdot 8 \times 10^{-7} \mathrm{~m}$
		(ii)	$\left(\begin{array}{l} \left(d=2 \times 10^{-6} \text { gives: }\right) \\ \quad \frac{1}{d}=0.50 \times 10^{6} \\ \sin \theta=0.24 \text { from graph } \\ \theta=14^{\circ} \end{array}\right.$	3	Sig figs: Accept 10, 13•9, 13•89 Alternative method - $m \lambda=d \sin \theta$ Accept: $\lambda=d \sin \theta$ in this case $\begin{array}{ll} 1 \times 4.8 \times 10^{-7}=2.0 \times 10^{-6} \times \sin \theta & 1 \\ \theta=14^{\circ} \tag{1} \end{array}$ Or consistent with (b)(i).
	(c)		Any two correct answers from: Repeat measurements Use additional gratings Move screen further away Use second order maxima to determine θ Measure angle from first order to first order	2	Independent marks For the first point opposite, it must be clear that the candidate is implying that the measurements are being repeated. Do not accept: 'repeat the experiment' 'different sizes of slits/gratings' 'darkened room' Any additional improvements stated (beyond two) that reduce reliability, then \pm rule applies.

11. The use of analogies from everyday life can help better understanding of physics concepts. A car moving from a smooth surface to a rough surface, eg from a road to sand, can be used as an analogy for the refraction of light.

Use your knowledge of physics to comment on this analogy.
12. A lamp is connected to a battery containing two cells as shown.

The e.m.f. of each cell is 1.5 V and the internal resistance of each cell is 2.7Ω. The reading on the ammeter is 64 mA .
(a) State what is meant by an e.m.f. of 1.5 V .
(b) (i) Show that the lost volts in the battery is 0.35 V .

Space for working and answer
(ii) Determine the reading on the voltmeter.

Space for working and answer
(iii) Calculate the power dissipated by the lamp.

Space for working and answer

Back to Table

12. (continued)
(c) In a different circuit, an LED is connected to a battery containing four cells.

The potential difference across the LED is 3.6 V when the current is 26 mA . Determine the resistance of resistor R .
Space for working and answer

Back to Table

Question			Answer	Max mark	Additional guidance
12.	(a)		$1 \cdot 5 \mathrm{~J}$ (of energy) is supplied to/gained by each coulomb (of charge passing through the cell).	1	Accept 'given to'... Accept 'battery'/‘source'.
	(b)	(i)	$\begin{aligned} & \text { lost volts }=I r \\ & \text { lost volts }=64 \times 10^{-3} \times(2 \times 2.7) 1 \\ & \text { lost volts }=0.35 \mathrm{~V} \end{aligned}$	2	"SHOW" question. Must start with a correct formula. Accept $V=I R$ Accept 5.4 as substitution for ' r ' Accept working out lost volts for one cell, then doubling.
		(ii)	$V=2 \cdot 7 \mathrm{~V}$	1	Must use 0.35 V Do not accept 3 V on its own, but if 3 V is clearly shown as a rounded value - 1 mark.
		(iii)	$\begin{array}{\|ll\|} \hline P=I V & 1 \\ P=64 \times 10^{-3} \times 2.7 & 1 \\ P=0 \cdot 17 \mathrm{~W} & 1 \end{array}$	3	Or consistent with (b)(ii) Sig figs: Accept 0.2, 0.173, 0.1728

Back to Table

| Question | | Answer | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 12. | | | | |

13. An uncharged $220 \mu \mathrm{~F}$ capacitor is connected in a circuit as shown.

The 12 V battery has negligible internal resistance.
(a) Switch S_{1} is closed and the capacitor charges in a time of $7 \cdot 5 \mathrm{~s}$.

Calculate the initial charging current.
Space for working and answer
(b) Switch S_{1} is opened.

The capacitor is discharged.
Switch S_{2} is now closed and then switch S_{1} is closed.
Explain why the time for the capacitor to fully charge is less than in part (a).

Back to Table

Question		Answer	Max mark	Additional guidance
13.	(a)	$\begin{array}{ll} V=I R & 1 \\ 12=I \times 6800 & 1 \\ I=1.8 \times 10^{-3} A & 1 \end{array}$	3	Sig figs: Accept 2, 1.76, 1.765
	(b)	The (circuit/total) resistance is less Initial charging current is greater	2	Independent marks. Accept: Average current is greater OR The current at any given time is greater. 'Current greater' on its own is not sufficient for $2^{\text {nd }}$ mark.

Back to Table

14. Solar cells are made by joining n-type and p-type semiconductor materials. A layer is formed at the junction between the materials.
(a) A potential difference is produced when photons enter the layer between the p-type and n-type materials.

State the name of this effect.
(b) A student carries out an experiment using a solar cell connected to a variable resistor R as shown.

A lamp is placed above the solar cell and switched on.
The variable resistor is altered and readings of current and voltage are taken. These readings are used to produce the following graph.

14. (b) (continued)
(i) Solar cells have a maximum power output for a particular irradiance of light.

In this experiment, the maximum power output occurs when the voltage is $2 \cdot 1 \mathrm{~V}$.
Use information from the graph to estimate a value for the maximum power output from the solar cell. Space for working and answer
(ii) The lamp is now moved closer to the solar cell.

Explain, in terms of photons, why the maximum output power from the solar cell increases.

Back to Table

Question	Answer	Max mark	Additional guidance

14.	(a)		Photovoltaic (effect)	1	
	(b)	(i)	$I=35 \mathrm{~mA}$ (from graph) 1 $P=I V$ 1 $(P=0.035 \times 2.1)$ $P=0.074 \mathrm{~W}$ 1	3	$P=I V$ anywhere, 1 mark. Sig figs: Accept 0.07, 0.0735 Accept a value for I between 34.5 and 35 mA inclusive. $I=34.5 \mathrm{~mA}$ gives $P=0.073 \mathrm{~W}$ Sig figs for above: Accept $0 \cdot 07,0 \cdot 0725,0.07245$
		(ii)	Greater number of photons (strike the solar cell) per second	1	The answer has to imply a 'rate'. Any correct statement followed by wrong physics, 0 marks.

15. A wire of length L and cross-sectional area A is shown.

The resistance R of the wire is given by the relationship

$$
R=\frac{\rho L}{A}
$$

where ρ is the resistivity of the wire in $\Omega \mathrm{m}$.
(a) The resistivity of aluminium is $2.8 \times 10^{-8} \Omega \mathrm{~m}$.

Calculate the resistance of an aluminium wire of length 0.82 m and cross-sectional area $4.0 \times 10^{-6} \mathrm{~m}^{2}$.
Space for working and answer
15. (continued)
(b) A student carries out an investigation to determine the resistivity of a cylindrical metal wire of cross-sectional area $4.52 \times 10^{-6} \mathrm{~m}^{2}$.
$4.52 \times 10^{-6} \mathrm{~m}^{2}$

The student varies the length L of the wire and measures the corresponding resistance R of the wire.
The results are shown in the table.

Length of wire $L(\mathrm{~m})$	Resistance of wire $R\left(\times 10^{-3} \Omega\right)$
1.5	5.6
2.0	7.5
2.5	9.4
3.0	11.2
3.5	13.2

(i) Using the square-ruled paper on Page 36, draw a graph of R against L.
(ii) Calculate the gradient of your graph.

Space for working and answer
(iii) Determine the resistivity of the metal wire.

Space for working and answer

Question			Answer	Max mark	Additional guidance
15.	(a)		$\begin{align*} & R=\frac{\rho L}{A} \\ & R=\frac{2.8 \times 10^{-8} \times 0.82}{4.0 \times 10^{-6}} \tag{1}\\ & R=5.7 \times 10^{-3} \Omega \end{align*}$	2	Sig figs: $\text { Accept } 6 \times 10^{-3}, 5.74 \times 10^{-3}$ 5.740×10^{-3}
	(b)	(i)	Suitable scales with labels on axes (quantity and unit) [Allow for axes starting at zero or broken axes or starting at an appropriate value] Correct plotting of points Best fit line	3	The scale must correctly extend over the range of the points plotted. The resistance scale must include ($\times 10^{-3}$) or show correct converted values, otherwise maximum 2 marks. If an invalid scale is used on either axis eg values for resistance from the table are used as major grid line values - 0 marks. Accuracy of plotting should be easily checkable with scale chosen. If the origin on an axis is shown, the scale must either be continuous or the axis must be 'broken'. Otherwise maximum 2 marks. Do not penalise if candidates plot L against R.

Question			Answer	Max mark	Additional guidance
15.	(b)	(ii)	Choosing 2 points on their line 1 Calculate gradient : accept value between $3.7 \times 10^{-3} \text { and } 4.0 \times 10^{-3}\left(\Omega \mathrm{~m}^{-1}\right) \quad 1$ (min 1 sig fig, max 4 sig figs)	2	Must be consistent with graph drawn for (b)(i). Candidates are asked to calculate the gradient of their graph. Calculated value must be consistent with the points selected. Data points $x=3.0$ and 3.5 give an acceptable gradient of $4 \cdot 0 \times 10^{-3}$. If the scale points do not lie on the line drawn outwith $\pm 1 / 2$ box tolerance, the scale points cannot be used to calculate the gradient. If $\left(\times 10^{-3}\right)$ is not included in the final answer, maximum 1 mark unless this being omitted is consistent with the graph drawn in (b)(i). Unit is not required, but must be correct if stated and be consistent with graph drawn, otherwise maximum 1 mark.

Back to Table

Question			Answer		Max mark	Additional guidance
15.	(b)	(iii)	$\begin{aligned} & \rho=\text { gradient } \times A \\ & \rho=3.7 \times 10^{-3} \times 4.52 \times 10^{-6} \\ & \rho=1.7 \times 10^{-8} \Omega \mathrm{~m} \end{aligned}$	1 1 1	3	Or consistent with (b)(ii). gradient $=3.7 \times 10^{-3}$ leads to $\rho=1.672 \times 10^{-8} \Omega \mathrm{~m}$ gradient $=4.0 \times 10^{-3}$ leads to $\rho=1.808 \times 10^{-8} \Omega \mathrm{~m}$ If the candidate has drawn a straight line through the origin (tolerance within ± 1 full box), then any point on the line can be used to calculate the resistivity. If the candidate has used a point on their line and uses continuous scales from zero, but has not extended their line back through the origin, then use the ruler tool to confirm that their line passes through the origin within tolerance. If the line drawn (or extrapolated line 'created' on Assessor) does NOT pass through the origin within ± 1 full box tolerance, the gradient of the line must be used and not one single point selected, otherwise 0 marks. If candidate has chosen an appropriate point on their line, 1 mark for selection of point 1 mark for correct substitution 1 mark for final answer. If $\left(\times 10^{-3}\right)$ is missing from substitution, then maximum 1 mark if not corrected in the unit given with the final answer. If the candidate uses a broken scale on either axis, or does not start their scale at zero, they must use the gradient in their calculation of ρ, otherwise 0 marks. If candidate has plotted L against R, the formula becomes $\rho=\frac{1}{\text { gradient }} \times A$ otherwise 0 marks.

[END OF MARKING INSTRUCTIONS]

Back to Table

X757/76/02

Section 1 - Questions

TUESDAY, 8 MAY
9:00 AM - 11:30 AM

Instructions for the completion of Section 1 are given on page 02 of your question and answer booklet X757/76/01.
Record your answers on the answer grid on page 03 of your question and answer booklet.
Reference may be made to the Data Sheet on page 02 of this booklet and to the Relationships Sheet X757/76/11.
Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Back to Table

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Magnitude of the charge on an electron Universal Constant of Gravitation Gravitational acceleration on Earth Hubble's constant	g	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
			Lasers		
			Element	Wavelength/nm	Colour
Sodium	589	Yellow			

PROPERTIES OF SELECTED MATERIALS

Substance	Density $/ \mathrm{kg} \mathrm{m}^{-3}$	Melting Point/K	Boiling Point/K
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Back to Table

SECTION 1 - 20 marks

Attempt ALL questions

1. A car is moving at a speed of $2 \cdot 0 \mathrm{~m} \mathrm{~s}^{-1}$.

The car now accelerates at $4.0 \mathrm{~m} \mathrm{~s}^{-2}$ until it reaches a speed of $14 \mathrm{~m} \mathrm{~s}^{-1}$.
The distance travelled by the car during this acceleration is
A 1.5 m
B $\quad 18 \mathrm{~m}$
C $\quad 24 \mathrm{~m}$
D 25 m
E $\quad 48 \mathrm{~m}$.
2. A ball is dropped from rest and allowed to bounce several times.

The graph shows how the velocity of the ball varies with time.

A student makes the following statements about the ball.
I The ball hits the ground at P.
II The ball is moving upwards between Q and R.
III The ball is moving upwards between R and S.
Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E I and III only

Back to Table

3. A block of mass 6.0 kg and a block of mass 8.0 kg are connected by a string. A force of 32 N is applied to the blocks as shown.

A frictional force of 4.0 N acts on each block.
The acceleration of the 6.0 kg block is
A $\quad 1.7 \mathrm{~m} \mathrm{~s}^{-2}$
B $\quad 2.0 \mathrm{~m} \mathrm{~s}^{-2}$
C $2.3 \mathrm{~m} \mathrm{~s}^{-2}$
D $\quad 2.9 \mathrm{~m} \mathrm{~s}^{-2}$
E $\quad 5.3 \mathrm{~m} \mathrm{~s}^{-2}$.
4. A person stands on a weighing machine in a lift. When the lift is at rest, the reading on the weighing machine is 700 N .
The lift now descends and its speed increases at a constant rate.
The reading on the weighing machine
A is a constant value higher than 700 N
B is a constant value lower than 700 N
C continually increases from 700 N
D continually decreases from 700 N
E remains constant at 700 N .
5. Enceladus is a moon of Saturn. The mass of Enceladus is $1.08 \times 10^{20} \mathrm{~kg}$.

The mass of Saturn is $5.68 \times 10^{26} \mathrm{~kg}$.
The gravitational force of attraction between Enceladus and Saturn is $7.24 \times 10^{19} \mathrm{~N}$. The orbital radius of Enceladus around Saturn is

A $\quad 2.38 \times 10^{8} \mathrm{~m}$
B $\quad 9.11 \times 10^{13} \mathrm{~m}$
C $5.65 \times 10^{16} \mathrm{~m}$
D $8.30 \times 10^{27} \mathrm{~m}$
E $3.19 \times 10^{33} \mathrm{~m}$.

Back to Table

6. A spacecraft is travelling at $0 \cdot 10 \mathrm{c}$ relative to a star.

An observer on the spacecraft measures the speed of light emitted by the star to be
A 0.90 c
B 0.99 c
C $1.00 c$
D $1.01 c$
E $1 \cdot 10 c$.
7. A spacecraft is travelling at a speed of $0 \cdot 200 \mathrm{c}$ relative to the Earth.

The spacecraft emits a signal for $20 \cdot 0$ seconds as measured in the frame of reference of the spacecraft.
An observer on Earth measures the duration of the signal as
A $\quad 19.2 \mathrm{~s}$
B $\quad 19.6 \mathrm{~s}$
C $\quad 20.0 \mathrm{~s}$
D 20.4 s
E 20.8 s .
8. How many types of quark are there?

A 8
B 6
C 4
D 3
E 2
9. An electron is a

A boson
B hadron
C baryon
D meson
E lepton.

Back to Table

10. A proton enters a region of magnetic field as shown.

On entering the magnetic field the proton
A deflects into the page
B deflects out of the page
C deflects towards the top of the page
D deflects towards the bottom of the page
E is not deflected.
11. A nuclear fission reaction is represented by the following statement.

$$
{ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{141} \mathrm{Ba}+\mathrm{X}+3{ }_{0}^{1} \mathrm{n}
$$

The nucleus represented by X is

A ${ }_{40}^{96} \mathrm{Zr}$
B $\quad{ }_{36}^{92} \mathrm{Kr}$
C $\quad{ }_{40}^{97} \mathrm{Zr}$
D ${ }_{36}^{93} \mathrm{Kr}$
E ${ }_{40}^{94} \mathrm{Zr}$.
12. The irradiance on a surface 0.50 m from a point source of light is I.

The irradiance on a surface 1.5 m from this source is
A $0.11 I$
B $0.33 I$
C 1.5 I
D $3.0 I$
E 9.0I.

Back to Table

13. Waves from two coherent sources, S_{1} and S_{2}, produce an interference pattern. Maxima are detected at the positions shown below.

The path difference $S_{1} P-S_{2} P$ is 154 mm .
The wavelength of the waves is
A $\quad 15.4 \mathrm{~mm}$
B $\quad 25.7 \mathrm{~mm}$
C $\quad 28.0 \mathrm{~mm}$
D $\quad 30.8 \mathrm{~mm}$
E $\quad 34.2 \mathrm{~mm}$.
14. A ray of monochromatic light passes from air into a block of glass as shown.

The wavelength of this light in air is $6.30 \times 10^{-7} \mathrm{~m}$.
The refractive index of the glass for this light is 1.50 .
The frequency of this light in the glass is
A $\quad 2.10 \times 10^{-15} \mathrm{~Hz}$
B $\quad 1.26 \times 10^{2} \mathrm{~Hz}$
C $\quad 1.89 \times 10^{2} \mathrm{~Hz}$
D $\quad 4.76 \times 10^{14} \mathrm{~Hz}$
E $\quad 7.14 \times 10^{14} \mathrm{~Hz}$.

Back to Table

15. A circuit is set up as shown.

The battery has negligible internal resistance.
A student makes the following statements about the readings on the meters in this circuit.
I When switch S is open the reading on the voltmeter will be 6.0 V .
II When switch S is open the reading on A_{2} will be 0.60 A .
III When switch S is closed the reading on A_{1} will be 0.80 A .
Which of these statements is/are correct?
A I only
B II only
C I and II only
D II and III only
E I, II and III
16. The power dissipated in a 120Ω resistor is 4.8 W .

The current in the resistor is
A $\quad 0.020 \mathrm{~A}$
B $\quad 0.040 \mathrm{~A}$
C $\quad 0.20 \mathrm{~A}$
D $\quad 5.0 \mathrm{~A}$
E $\quad 25 \mathrm{~A}$.

Back to Table

17. A $24 \cdot 0 \mu \mathrm{~F}$ capacitor is charged until the potential difference across it is 125 V .

The charge stored on the capacitor is
A $\quad 5.21 \times 10^{6} \mathrm{C}$
B $\quad 7.75 \times 10^{-2} \mathrm{C}$
C $1.50 \times 10^{-3} \mathrm{C}$
D $3.00 \times 10^{-3} \mathrm{C}$
E $\quad 1.92 \times 10^{-7} \mathrm{C}$.
18. A circuit is set up as shown.

When the capacitor is fully charged the energy stored in the capacitor is
A $1.6 \times 10^{-5} \mathrm{~J}$
B $\quad 1.3 \times 10^{-3} \mathrm{~J}$
C $\quad 2.6 \times 10^{-3} \mathrm{~J}$
D $1.6 \times 10^{-2} \mathrm{~J}$
E $\quad 1.6 \times 10^{4} \mathrm{~J}$.
19. The circuit shown is used to charge and then discharge a capacitor C.

Which pair of graphs shows how the potential difference V across the capacitor varies with time t during charging and discharging?

Charging
A

C

D

E

Back to Table

20. A student carries out an experiment to determine the specific heat capacity c of a solid. The relationship used to calculate c is

$$
c=\frac{E}{m \Delta T}
$$

The recorded measurements and their percentage uncertainties are shown.

$$
\begin{aligned}
\text { energy supplied, } E & =5000 \mathrm{~J} \pm 1 \% \\
\text { mass of solid, } m & =0 \cdot 20 \mathrm{~kg} \pm 2 \% \\
\text { change in temperature, } \Delta T & =4 \cdot 5^{\circ} \mathrm{C} \pm 5 \%
\end{aligned}
$$

A good estimate of the percentage uncertainty in the calculated value of c is
A 8%
B 7%
C 5%
D 3\%
E 1%.
[END OF SECTION 1. NOW ATTEMPT THE QUESTIONS IN SECTION 2 OF YOUR QUESTION AND ANSWER BOOKLET]

Marking instructions for each question

Section 1

Question	Answer	Mark
1.	C	1
2.	D	1
3.	A	1
4.	B	1
5.	A	1
6.	C	1
7.	D	1
8.	B	1
9.	E	1
10.	C	1
11.	B	1
12.	A	1
13.	D	1
14.	D	1
15.	E	1
16.	C	1
17.	D	1
18.	D	1
19.	E	1
20.	C	1

National

Fill in these boxes and read what is printed below.

Full name of centre

Town

Surname

Number of seat

Date of birth

Total marks - 130
SECTION 1 - 20 marks
Attempt ALL questions.
Instructions for the completion of Section 1 are given on page 02.

SECTION 2-110 marks

Attempt ALL questions.
Reference may be made to the Data Sheet on page 02 of the question paper X757/76/02 and to the Relationships Sheet X757/76/11.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. You should score through your rough work when you have written your final copy.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

SECTION 2-110 marks

Attempt ALL questions

1. During a school funfair, a student throws a wet sponge at a teacher. The sponge is thrown with an initial velocity of $7.4 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 30° to the horizontal.

The sponge leaves the student's hand at a height of 1.5 m above the ground.

The sponge hits the teacher.
The effects of air resistance can be ignored.
(a) (i) Calculate:
(A) the horizontal component of the initial velocity of the sponge; 1 Space for working and answer
(B) the vertical component of the initial velocity of the sponge. Space for working and answer

1. (a) (continued)
(ii) Calculate the time taken for the sponge to reach its maximum height.
Space for working and answer
(iii) The sponge takes a further 0.45 s to travel from its maximum height until it hits the teacher.

Determine the height h above the ground at which the sponge hits the teacher.
Space for working and answer
(b) The student throwing the sponge makes the following statement.
"If the sponge is thrown with a higher speed at the same angle from the same height then it would take a shorter time to hit the teacher in the same place."
Explain why the student's statement is incorrect.

Section 2

Question			Answer	Max mark	Additional guidance
1.	(a)	(i) (A)	$\begin{align*} & u_{h}=7.4 \cos 30 \\ & u_{h}=6.4 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	1	Accept: 6, 6.41, 6-409
		(i) (B)	$\begin{align*} & u_{v}=7.4 \sin 30 \\ & u_{v}=3.7 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	1	Accept: 4, 3•70, 3•700
		(ii)	$\begin{align*} & v=u+a t \tag{1}\\ & 0=3.7+(-9.8) t \tag{1}\\ & \mathrm{t}=0.38 \mathrm{~s} \tag{1} \end{align*}$	3	OR consistent with (a)(i)(B) u and a must have opposite signs Accept: 0.4, 0.378, 0.3776
		(iii)	$\begin{align*} & s=u t+\frac{1}{2} a t^{2} \tag{1}\\ & s=(3.7 \times 0.83)+\left(0.5 \times-9.8 \times 0.83^{2}\right) \tag{1}\\ & h=1.5+\left((3.7 \times 0.83) \times\left(0.5 \times-9.8 \times 0.83^{2}\right)\right) \tag{1}\\ & h=1.2 \mathrm{~m} \tag{1} \end{align*}$	4	OR consistent with (a)(i)(B) and (a)(ii) Accept: 1, 1•20, 1•195 For alternative methods 1 mark for ALL relationships 1 mark for ALL substitutions 1 mark for addition relative to 1.5 m 1 mark for final answer $\begin{aligned} & s=\frac{1}{2}(u+v) t \\ & s=\frac{1}{2} \times(3.7+0) \times 0.38 \\ & s=u t+\frac{1}{2} a t^{2} \\ & s=(0 \times 0.45)+\left(0.5 \times-9.8 \times 0.45^{2}\right) \\ & h_{\max }=1.5+\left(\frac{1}{2} \times(3.7+0) \times 0.38\right) \\ & h_{\max }=2.203(\mathrm{~m}) \\ & h=2.203+\left(0.5 \times-9.8 \times 0.45^{2}\right) \\ & h=1.2 \mathrm{~m} \end{aligned}$ Accept $1,1 \cdot 21,1 \cdot 211$ for this method.

Back to Table

Question		Answer	Max mark	Additional guidance		
1.	(b)	(Initial) vertical/horizontal speed is greater.	$\mathbf{2}$	Look for this statement first - if incorrect or missing then 0 marks.		
Sponge is higher than the teacher when it has travelled the same horizontal distance. OR Sponge has travelled further horizontally when it is at the same height as the teacher.	(1)				\quad	
:---						

2. An internet shopping company is planning to use drones to deliver packages.

(a) During a test the drone is hovering at a constant height above the ground.

The mass of the drone is 5.50 kg .
The mass of the package is 1.25 kg .
(i) Determine the upward force produced by the drone.

Space for working and answer
2. (a) (continued)
(ii) The package is now lowered using a motor and a cable.

A battery supplies 12 V across the motor. The resistance of the motor is $9 \cdot 6 \Omega$.

Calculate the power dissipated by the motor.
Space for working and answer
(iii) While the package is being lowered the cable breaks.

The upward force produced by the drone remains constant.
Describe the vertical motion of the drone immediately after the cable breaks.

Justify your answer.
2. (continued)
(b) To carry a package with a greater mass two drones are used as shown.

The drones are hovering at a constant height above the ground.
The mass of the package suspended from the two drones is 3.4 kg . Determine the tension in each cable.

Back to Table

Question			Answer	Max mark	Additional guidance
2.	(a)	(i)	$\begin{align*} & W=m g \tag{1}\\ & W=(5 \cdot 50+1 \cdot 25) \times 9 \cdot 8 \tag{1}\\ & W=66 \mathrm{~N} \tag{1} \end{align*}$	3	Accept: 70, 66•2, 66•15 In this question, ignore negative signs in both the substitution and final answer for weight. Do not accept: $F=m a$
	(ii)		$\begin{align*} & P=\frac{V^{2}}{R} \tag{1}\\ & P=\frac{12^{2}}{9 \cdot 6} \tag{1}\\ & P=15 \mathrm{~W} \tag{1} \end{align*}$	3	Accept: 20, 15•0, 15.00 For alternative methods 1 mark for ALL relationships 1 mark for ALL substitutions 1 mark for final answer
		(iii)	Drone accelerates upwards Upward force is greater than weight OR (Upward force remains constant but) weight decreases therefore forces are no longer balanced. OR (Upward force remains constant but) weight decreases therefore there is an unbalanced force (upwards).	2	Look for correct statement of effect first - if incorrect or missing then 0 marks. Accept free-body diagram to aid description of relative size and direction of forces acting on the drone.

Back to Table

	uesti	Answer	Max mark	Additional guidance
2.	(b)	$\begin{align*} & W=m g \\ & W=3 \cdot 4 \times 9 \cdot 8 \\ & W=33.32(\mathrm{~N}) \tag{1} \end{align*}$ Each cord supports $\begin{equation*} 33 \cdot 32 / 2=16 \cdot 66(\mathrm{~N}) \tag{1} \end{equation*}$ $\begin{align*} & F \cos 35=16.66 \tag{1}\\ & F=20 \mathrm{~N} \tag{1} \end{align*}$	4	Accept: 20•3, 20•34 Accept: $\begin{aligned} & F \sin 55=16.66 \\ & F=20 \mathrm{~N} \end{aligned}$ Alternative methods: Each cord supports $\begin{align*} & 3 \cdot 4 / 2=1 \cdot 7(\mathrm{~kg}) \\ & W=m g \tag{1}\\ & W=1.7 \times 9.8 \\ & W=16 \cdot 66(\mathrm{~N}) \\ & F \cos 35=16.66 \tag{1}\\ & F=20 \mathrm{~N} \tag{1} \end{align*}$ OR $W=m g$ $W=3.4 \times 9.8$ $\begin{equation*} W=33.32(\mathrm{~N}) \tag{1} \end{equation*}$ $\begin{equation*} F \cos 35=33 \cdot 32 \tag{1} \end{equation*}$ Tension in each cord $\begin{equation*} =40 \cdot 6762093 / 2=20 \mathrm{~N} \tag{1} \end{equation*}$

3. A student sets up an experiment to investigate a collision between two vehicles on a frictionless air track.

Vehicle X of mass 0.75 kg is travelling to the right along the track.
Vehicle Y of mass 0.50 kg is travelling to the left along the track with a speed of $0.30 \mathrm{~m} \mathrm{~s}^{-1}$.

The vehicles collide and move off separately.
A computer displays a graph showing the velocity of vehicle X from just before the collision to just after the collision.

3. (continued)
(a) Show that the velocity of vehicle Y after the collision is $0.42 \mathrm{~m} \mathrm{~s}^{-1}$.

Space for working and answer
(b) Determine the impulse on vehicle Y during the collision.
3. (continued)
(c) Explain how the student would determine whether the collision was elastic or inelastic.

Page 26

Back to Table

Question		Answer	Max mark	Additional guidance
3.	(a)	$\begin{align*} & \text { (Total momentum before }=\text { Total momentum after }) \\ & p=m v \\ & \text { OR } \tag{1}\\ & \left(m_{x} u_{x}+m_{y} u_{y}\right)=\left(m_{x} v_{x}+m_{y} v_{y}\right) \\ & (0.75 \times 0.50)+(0.50 \times-0.30)=(0.75 \times 0.02)+\left(0.50 \mathrm{v}_{y}\right) \tag{1}\\ & v_{y}=0.42 \mathrm{~m} \mathrm{~s}^{-1} \end{align*}$	2	"SHOW" question If sign convention is not applied then max 1 mark for formula.
	(b)	$\begin{align*} & F t=m v-m u \tag{1}\\ & F t=(0.50 \times 0.42)-(0.50 \times-0.30) \tag{1}\\ & F t=0.36 \mathrm{~N} \mathrm{~s} \tag{1} \end{align*}$	3	Accept: 0.4 Accept: Impulse $=m v-m u$ v and u must have opposite sign. Accept: $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
	(c)	Calculate the total kinetic energy before and (total kinetic energy) after. If E_{k} before is equal to E_{k} after the collision, is elastic. OR If E_{k} before is greater than E_{k} after, the collision is inelastic.	2	Look for a statement relating to calculating/finding the total E_{k} before and after first, otherwise 0 marks. There must be an indication of total kinetic energy or equivalent term. Accept: If kinetic energy is not the same, collision is inelastic. Can show by calculation but would still require a statement for the second mark. Do not Accept: If kinetic energy is gained, collision is inelastic. If candidate says energy is lost then max 1 mark.

4. A stunt is being carried out during the making of a film.

A car is to be driven up a ramp on a moving lorry by a stunt driver, who will attempt to land the car safely on the roof of a second moving lorry. The car is to stop on the roof of the second lorry while this lorry is still moving.

Using your knowledge of physics, comment on the challenges involved in carrying out the stunt successfully.

Page 28
5. Hubble's Law states that the universe is expanding. The expanding universe is one piece of evidence that supports the Big Bang theory.
(a) State one other piece of evidence that supports the Big Bang theory.
(b) A student plots some of the original data from the 1929 paper by Edwin Hubble and adds the line shown in order to determine a value for the Hubble constant H_{0}.

The student calculates the gradient of their line and obtains a value for the Hubble constant of $2.0 \times 10^{-17} \mathrm{~s}^{-1}$.

The age of the universe can be calculated using the relationship

$$
\text { age of universe }=\frac{1}{H_{0}}
$$

5. (b) (continued)
(i) Calculate the age of the universe, in years, obtained when using the student's value for the Hubble constant.

Space for working and answer
(ii) The current estimate for the age of the universe is 13.8×10^{9} years.
(A) State why the value obtained in (b)(i) is different from the current estimate for the age of the universe.
(B) Suggest a change that the student could make to their graph to obtain a value closer to the current estimate for the age of the universe.
(c) It has been discovered that the rate of expansion of the universe is increasing.
State what physicists think is responsible for this increase.

Back to Table

Question			Answer	Max mark	Additional guidance
5.	(a)		Cosmic Microwave Background Radiation OR Olber's Paradox OR Abundance of Hydrogen and Helium in the Universe	1	Present temperature of the universe 2.7K (Blackbody radiation graph) Accept: Abundance of Light elements in the Universe Do not accept: the abbreviation "CMBR" on its own. Do not accept any further evidence based on redshift alone.
	(b)	(i)	$\begin{align*} & \left(\text { Age }=\frac{1}{H_{0}}\right) \\ & \text { Age }=\frac{1}{2 \cdot 0 \times 10^{-17}} \tag{1}\\ & \left(\mathrm{Age}=5 \cdot 0 \times 10^{16}(\mathrm{~s})\right) \\ & \text { Age }=1 \cdot 6 \times 10^{9}(\text { years }) \tag{1} \end{align*}$	2	Accept: 2, 1•58, 1•584 Accept: 2, 1-59, 1-585 (365 days has been used - this does not need to be shown explicitly.) Years in brackets as question asks for age "in years".

Back to Table

Question		Answer	Max mark	Additional guidance	
(ii)	(A)	(Student's) value for H_{0} is incorrect/too large/not accurate (enough). OR Incorrect line (of best fit) drawn. OR The (student's) gradient (which is H_{0}) is too large. OR New/more data is available/more accurate. OR Not enough data at large distances.	Accept: H_{0} varies/decreases as age of the universe increases Do not accept: H_{0} is different		
		(B)	The student could draw the (correct) line of best fit. OR Student could use a larger sample/all of the 1929 Hubble data.	$\mathbf{1}$	Accept: The student could use current data.
(c)		Do not accept "different line of best fit" alone.			

6. An experiment is set up to demonstrate a simple particle accelerator.

(a) Electrons are accelerated from rest between the cathode and the anode by a potential difference of 1.6 kV .
(i) Show that the work done in accelerating an electron from rest is $2 \cdot 6 \times 10^{-16} \mathrm{~J}$.
Space for working and answer
(ii) Calculate the speed of the electron as it reaches the anode.
(a) Electrons are accelerated frost between the cathode and the anode by potential derence of 1.6 kV .

Space forking ander
(i) Calculat the

6. (continued)

(b) As the electrons travel through the vacuum towards the fluorescent screen they spread out.
In the path of the electrons there is a metal cross, which is connected to the positive terminal of the supply. The electrons that hit the cross are stopped by the metal.

Electrons that get past the metal cross hit a fluorescent screen at the far side of the tube.
When electrons hit the fluorescent screen, the screen glows.

The potential difference between the anode and the cathode is now increased to 2.2 kV . This changes what is observed on the screen.
Suggest one change that is observed.
You must justify your answer.
6. (continued)
(c) A student builds a model of a particle accelerator. The model accelerates a small ball on a circular track. A battery-operated motor accelerates the ball each time it passes the motor. To cause a collision a plastic block is pushed onto the track. The ball then hits the block.

Using your knowledge of physics comment on the model compared to a real particle accelerator, such as the large hadron collider at CERN.

Back to Table

Question			Answer	Max mark	Additional guidance
6.	(a)	(i)	$\begin{align*} & W=Q V \tag{1}\\ & W=1.60 \times 10^{-19} \times 1600 \tag{1}\\ & W=2.6 \times 10^{-16} \mathrm{~J} \end{align*}$	2	"SHOW" question
		(ii)	$\begin{align*} & E_{K}=\frac{1}{2} m v^{2} \tag{1}\\ & 2 \cdot 6 \times 10^{-16}=\frac{1}{2} \times 9 \cdot 11 \times 10^{-31} \times v^{2} \tag{1}\\ & v=2 \cdot 4 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Accept: 2, 2-39, 2-389
	(b)		Screen will be brighter/increase glow. Electrons will gain more energy/move faster. OR Increase in number of electrons per second.	2	Look for correct statement of effect first - if incorrect or missing then 0 marks. Accept: Circle of brightness on fluorescent screen is reduced. Greater force of attraction on the electrons due to the cross. OR Cross on screen is sharper. Greater force of attraction on the electrons due to the cross. 'increase in current' alone is insufficient for the justification. Any correct statement followed by wrong physics, 0 marks. Any correct statement followed by no justification, 0 marks.

7. A student uses a gold-leaf electroscope to investigate the photoelectric effect. A deflection of the gold leaf on the electroscope shows that the metal plate is charged.
The student charges the metal plate on the electroscope and the gold leaf is deflected.

gold-leaf electroscope
(a) Ultraviolet light is shone onto the negatively charged metal plate. The gold-leaf electroscope does not discharge. This indicates that photoelectrons are not ejected from the surface of the metal.
Suggest one reason why photoelectrons are not ejected from the surface of the metal.

7. (continued)

(b) The student adjusts the experiment so that the gold-leaf electroscope now discharges when ultraviolet light is shone onto the plate.
The work function for the metal plate is $6.94 \times 10^{-19} \mathrm{~J}$.
(i) State what is meant by a work function of $6.94 \times 10^{-19} \mathrm{~J}$.
(ii) The irradiance of the ultraviolet light on the metal plate is reduced by increasing the distance between the gold-leaf electroscope and the ultraviolet light source.

State what effect, if any, this has on the maximum kinetic energy of the photoelectrons ejected from the surface of the metal.
Justify your answer.

7. (continued)

(c) The graph shows how the kinetic energy of the photoelectrons ejected from the metal plate varies as the frequency of the incident radiation increases.

The threshold frequency for the metal plate is $1.05 \times 10^{15} \mathrm{~Hz}$.

The metal plate is now replaced with a different metal plate made of aluminium.
The aluminium has a threshold frequency of $0.99 \times 10^{15} \mathrm{~Hz}$.
Add a line to the graph to show how the kinetic energy of the photoelectrons ejected from the aluminium plate varies as the frequency of the incident radiation increases.
(An additional graph, if required, can be found on page 45.)
(d) Explain why the photoelectric effect provides evidence for the particle nature of light.

Back to Table

Question			Answer	Max mark	Additional guidance
7.	(a)		Frequency of UV/photons/light is not high enough. OR Frequency of UV/photons/light is less than threshold frequency. OR Energy of photons (of UV light) is not high enough. OR Energy of photons (of UV light) is less than work function. OR May not be a 'clean plate'.	1	Do not accept "gold" for metal plate.
	(b)	(i)	6.94×10^{-19} joules of energy is the minimum energy required for (photo) electrons to be emitted/ejected/ photoemission (of electrons).	1	Do not accept "to cause photoelectric effect" alone.
		(ii)	No change (to the kinetic energy). As the irradiance does not affect the energy of the photons/ $E=h f$ is unchanged.	2	Look for this first - if incorrect or missing then 0 marks.
	(c)		Lower starting frequency. Same gradient.	2	Independent marks Do not accept: Additional line starting at origin.
	(d)		Each photon contains a fixed/discrete amount of energy. OR Each photon removes one electron.	1	Some indication of quantisation of energy. If light was a wave then the photoelectric effect would occur regardless of the frequency of the light, it would just take longer for electrons to absorb the energy required to be ejected.

8. A student investigates interference of light by directing laser light of wavelength 630 nm onto a grating as shown.

(a) A pattern of bright spots is observed on a screen.
(i) Explain, in terms of waves, how bright spots are produced on the screen.
(ii) The grating has 250 lines per millimetre.

Calculate the angle θ between the central maximum and the third order maximum.

Space for working and answer
8. (a) (continued)
(iii) The grating is now replaced by one which has 600 lines per millimetre.

State the effect of this change on the pattern observed.
Justify your answer.
(iv) The interference pattern is produced by coherent light. State what is meant by the term coherent.
8. (continued)
(b) The student now shines light from the laser onto a $£ 5$ note.

When it is shone through the transparent section of the note the student observes a pattern of bright spots on the screen.
The diagram below shows the pattern that the student observes on the screen.

Suggest a reason for the difference in the pattern produced using the $£ 5$ note and the pattern produced using the grating.

Back to Table

Question			Answer	Max mark	Additional guidance
8.	(a)	(i)	Waves meet in phase. OR Crest meets crest. OR Trough meets trough. OR Path difference $=m \lambda$		Accept: peak for crest. Can be shown by diagram eg $A A D+A A D=A A G$ Diagram must imply addition of two waves in phase. Do not accept: 'join' or 'merge’ alone.
		(ii)	$\begin{align*} & m \lambda=d \sin \theta \tag{1}\\ & 3 \times 630 \times 10^{-9}=\frac{1}{250000} \sin \theta \tag{1}\\ & \theta=28^{\circ} \tag{1} \end{align*}$	3	Accept: $30^{\circ}, 28 \cdot 2^{\circ}, 28 \cdot 20^{\circ}$ Note: $\mathrm{d}=4 \times 10^{-6} \mathrm{~m}$ Alternative substitution: $\begin{align*} & m \lambda=d \sin \theta \tag{1}\\ & 3 \times 630 \times 10^{-9}=\frac{1 \times 10^{-3}}{250} \sin \theta \tag{1}\\ & \theta=28^{\circ} \tag{1} \end{align*}$
		(iii)	Spots will be further apart. OR Angle θ is greater. Slit separation d of new grating is smaller than the previous grating.	2	Look for correct statement of effect first - if incorrect or missing then 0 marks. Accept: fewer/less spots on the screen. Justification can be done by calculation. If calculation is carried out using $m=3$, candidate will obtain an invalid answer. This implies fewer/less spots (five) on the screen.
		(iv)	(The waves from the laser have a) constant phase relationship (and have the same frequency, wavelength, and velocity).	1	"In phase" is not sufficient.
	(b)		(Polymer) note has vertical and horizontal or crossed lines/grid/grating.	1	Accept: crosshatch, mesh Accept: diagram to aid description There are vertical and horizontal spots so there are vertical and horizontal lines or a grid of lines.

9. A ray of monochromatic light is incident on a glass prism as shown.

(a) Show that the refractive index of the glass for this ray of light is 1.89 .

Space for working and answer
(b) (i) State what is meant by the term critical angle.
9. (b) (continued)
(ii) Calculate the critical angle for this light in the prism.

Space for working and answer
(iii) Complete the diagram below to show the path of the ray as it passes through the prism and emerges into the air.
Mark on the diagram the values of all relevant angles.
incident ray

(An additional diagram, if required, can be found on page 45.)
[Turn over
9. (continued)
(c) A ray of white light is shone through the prism and a spectrum is observed as shown.

The prism is now replaced with another prism made from a different type of glass with a lower refractive index.
Describe one difference in the spectrum produced by this prism compared to the spectrum produced by the first prism.

Back to Table

Question			Answer	Max mark	Additional guidance
9.	(a)		$\begin{align*} & n=\frac{\sin \theta_{1}}{\sin \theta_{2}} \tag{1}\\ & n=\frac{\sin 45 \cdot 0}{\sin 22 \cdot 0} \tag{1} \end{align*}$ $\begin{equation*} n=1.89 \tag{1} \end{equation*}$	2	"SHOW" question Accept: $\begin{align*} & \frac{n_{2}}{n_{1}}=\frac{\sin \theta_{1}}{\sin \theta_{2}} \tag{1}\\ & \frac{n_{2}}{1}=\frac{\sin 45 \cdot 0}{\sin 22.0} \\ & n=1.89 \end{align*}$
	(b)	(i)	The angle of incidence such that the angle of refraction is 90°.	1	Accept a description of the incident ray as an alternative to the word 'incidence'. Do not accept: The minimum angle of incidence that causes total internal reflection.
		(ii)	$\begin{align*} & \sin \theta_{C}=\frac{1}{n} \tag{1}\\ & \sin \theta_{C}=\frac{1}{1.89} \tag{1} \end{align*}$ $\begin{equation*} \theta_{C}=31.9^{\circ} \tag{1} \end{equation*}$	3	Accept: $32^{\circ}, 31 \cdot 94^{\circ}$, 31.945°

Back to Table

Question			Answer	Max mark	Additional guidance
9.	(b)	(iii)	Total Internal Reflection 38° Refraction away from the normal on exit 22° and 45°	4	OR consistent with part (ii) If arithmetic error for finding one of the angles - maximum 3 marks. First two marks are independent. To access last two marks TIR must be shown. Reflection at any angle Either incidence or reflection angle labelled. Refraction at any angle Both angles required. Notes: Only penalise missing degree unit once in whole question. Decimal points not required Candidate may calculate exit angle, therefore $45 \cdot 1^{\circ}$ is acceptable
	(c)		Less deviation in spectrum position OR Less dispersion.	1	Accept: Spectrum position higher on screen Smaller spread/width of spectrum Brighter spectrum Do not accept: smaller spectrum alone

10. In a laboratory experiment, light from a hydrogen discharge lamp is used to produce a line emission spectrum. The line spectrum for hydrogen has four lines in the visible region as shown.

(a) The production of the line spectrum can be explained using the Bohr model of the atom.
State two features of the Bohr model of the atom.
11. (continued)
(b) Some of the energy levels of the hydrogen atom are shown.

One of the spectral lines is due to electron transitions from E_{3} to E_{1}.
Determine the frequency of the photon emitted when an electron makes this transition.

Space for working and answer
10. (continued)
(c) In the laboratory, a line in the hydrogen spectrum is observed at a wavelength of 656 nm .
When the spectrum of light from a distant galaxy is viewed, this hydrogen line is now observed at a wavelength of 661 nm .
Determine the recessional velocity of the distant galaxy.

Question		Answer	Max mark	Additional guidance
10.	(a)	A (central) positively charged nucleus. (Negatively charged) electrons in (discrete) energy levels/shells (orbiting the nucleus, not radiating energy.) When an electron moves from one state to another, the energy lost or gained is done so ONLY in very specific amounts of energy. Each line in a spectrum is produced when an electron moves from one energy level/orbit/shell to another.	2	Any two correct answers Independent marks Accept: A clearly labelled diagram A (central) nucleus containing protons (and neutrons). Some indication of quantisation of energy Do not accept: Atom is mainly empty space. Nucleus is small compared to size of the atom. Any statement referring to photons and photon frequency is a consequence, not a feature.
	(b)	$\begin{align*} & E_{2}-E_{1}=h f \tag{1}\\ & -1.36 \times 10^{-19}-\left(-5.45 \times 10^{-19}\right)=6.63 \times 10^{-34} \times f \tag{1}\\ & f=6.17 \times 10^{14} \mathrm{~Hz} \tag{1} \end{align*}$	3	Accept: 6•2, 6.169, 6.1689 Accept: $(\Delta) E=h f$ or $E_{3}-E_{1}=h f$ for formula mark anywhere Accept: $\begin{aligned} & 5.45 \times 10^{-19}-1 \cdot 36 \times 10^{-19} \\ & =6 \cdot 63 \times 10^{-34} \times f \end{aligned}$ for substitution mark Note: Correct $\Delta E=4.09 \times 10^{-19}(\mathrm{~J})$ If $1.36 \times 10^{-19}-5.45 \times 10^{-19}$ is shown for ΔE, maximum 1 mark for a correct formula.

Back to Table

11. A student constructs a battery using a potato, a strip of copper and a strip of magnesium.

The student then sets up the following circuit with the potato battery connected to a variable resistor R, in order that the electromotive force (e.m.f.) and internal resistance of the battery may be determined.

(a) State what is meant by the term electromotive force (e.m.f.).
(b) The student uses readings of current I and terminal potential difference V from this circuit to produce the graph shown.

Determine the internal resistance of the potato battery.
Space for working and answer
[Turn over

Page 56
Back to Table
11. (continued)
(c) The student connects a red LED and a blue LED, in turn, to the battery. The LEDs are forward biased when connected.
The student observes that the battery will operate the red LED but not the blue LED.
The diagram represents the band structure of the blue LED.

LEDs emit light when electrons fall from the conduction band into the valence band of the p-type semiconductor.
Explain, using band theory, why the blue LED will not operate with this battery.

Back to Table

Question		Answer	Max mark	Additional guidance
11.	(a)	The number of joules/energy gained by/supplied to 1 coulomb (of charge passing through the cell).	1	Accept unit charge for 1 coulomb.
	(b)	$\begin{align*} & \text { gradient }=\frac{\left(290 \times 10^{-3}-470 \times 10^{-3}\right)}{\left(105 \times 10^{-6}-55 \times 10^{-6}\right)} \tag{1}\\ & \text { gradient }=-3600 \tag{1}\\ & \text { (gradient }=-\mathrm{r} \text {) } \tag{1}\\ & r=3600 \Omega \tag{1} \end{align*}$	3	Accept: 4000 Gradient $=r$ is wrong physics, award 0 marks. subs into gradient formula calculating gradient Alternative method: $\begin{align*} & E=V+I r \tag{1}\\ & 670 \times 10^{-3}=400 \times 10^{-3}+75 \times 10^{-6} r \tag{1}\\ & r=3600 \Omega \tag{1} \end{align*}$
	(c)	The electrons do not gain enough energy to move into/towards the conduction band of the p-type.	1	Electrons in conduction band (of the n-type) do not gain enough energy to move into/towards the p-type.

12. A student carries out a series of experiments to investigate alternating current.
(a) A signal generator is connected to an oscilloscope and a circuit as shown.

The output of the signal generator is displayed on the oscilloscope.

The Y -gain setting on the oscilloscope is $1.0 \mathrm{~V} / \mathrm{div}$.
The timebase setting on the oscilloscope is $0.5 \mathrm{~s} / \mathrm{div}$.
12. (a) (continued)
(i) Determine the peak voltage of the output of the signal generator. Space for working and answer
(ii) Determine the frequency of the output of the signal generator.

Space for working and answer
(iii) The student observes that the red LED is only lit when the ammeter gives a positive reading and the green LED is only lit when the ammeter gives a negative reading.
Explain these observations.
12. (continued)
(b) The signal generator is now connected in a circuit as shown.

The settings on the signal generator are unchanged.
The signal generator has negligible internal resistance.

Determine the r.m.s. voltage across the 82Ω resistor.
Space for working and answer

Back to Table

Question			Answer	Max mark	Additional guidance
12.	(a)	(i)	$(3 \times 1.0=) 3.0 \mathrm{~V}$	1	Accept: 3, 3.00, 3.000
		(ii)	$\begin{align*} & f=\frac{1}{T} \tag{1}\\ & f=\frac{1}{2} \tag{1} \end{align*}$ $\begin{equation*} f=0.5 \mathrm{~Hz} \tag{1} \end{equation*}$	3	Accept: 0.50, 0.500
		(iii)	The LEDs will light when they are forward biased. The change in polarity of voltage changes the biasing.	2	Independent marks LEDs will only conduct in one direction (1) Identifying current/voltage has changed direction (1) Do not accept 'different direction' alone. One LED conducts during one half of the cycle the other LED conducts during the other half of the cycle.
	(b)		$\begin{align*} & V_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{S} \tag{1}\\ & V_{2}=\left(\frac{82}{68+82}\right) \times 3.0 \tag{1}\\ & V_{2}=1.64(\mathrm{~V}) \tag{1}\\ & V_{\text {peak }}=\sqrt{2} V_{\text {rms }} \tag{1}\\ & 1.64=\sqrt{2} V_{\text {rms }} \tag{1}\\ & V_{\text {rms }}=1.2 \mathrm{~V} \end{align*}$	5	OR consistent with (a)(i) Accept: 1, 1•16, 1•160 Alternative Methods: $\begin{align*} & V_{\text {peak }}=\sqrt{2} V_{\text {rms }} \\ & 3 \cdot 0=\sqrt{2} V_{r m s} \\ & V_{r m s}=2 \cdot 12132034(\mathrm{~V}) \\ & V_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) V_{S} \tag{1}\\ & V_{2}=\left(\frac{82}{68+82}\right) \times 2 \cdot 12132034 \tag{1}\\ & V_{2}=1.2 \mathrm{~V} \tag{1} \end{align*}$

Back to Table

Question		Answer	Max mark	Additional guidance	
12.	(b)	continued		OR	
				$V_{\text {peak }}=\sqrt{2} V_{r m s}$	(1)
				$3 \cdot 0=\sqrt{2} V_{\text {rms }}$	(1)
				$V_{r m s}=2 \cdot 12132034(\mathrm{~V})$	
				$V=I R$	
				$2 \cdot 12132034=I \times(68+82)$	
				$I=0.0141421356$ (A)	
				$V=I R$	
				$V=0.0141421356 \times 82$	
				$V=1.2 \mathrm{~V}$	
				$V=I R$ twice	(1)
				Both substitutions into $V=I R$	(1)
				Final answer	
				OR	
				$V=I R$	
				$3 \cdot 0=I \times(68+82)$	
				$I=0.02$ (A)	
				$V=I R$	
				$V=0.02 \times 82$	
				$V=1.64(\mathrm{~V})$	
				$V_{\text {peak }}=\sqrt{2} V_{r m s}$	(1)
				$1.64=\sqrt{2} V_{r m s}$	(1)
				$V_{r m s}=1.2 \mathrm{~V}$	
				$V=I R$ twice	(1)
				Both substitutions into $V=I R$	(1)
				Final answer	

13. A student sets up an experiment to investigate the pressure due to a liquid as shown.

The pressure due to a liquid is given by the relationship

$$
p=\rho g h
$$

where p is the pressure due to the liquid in pascals (Pa), g is the gravitational field strength in Nkg^{-1}, ρ is the density of the liquid in $\mathrm{kg} \mathrm{m}^{-3}$, and h is the depth in the liquid in m .
(a) The student initially carries out the investigation using water.

The density of water is $1.00 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$.
Calculate the pressure due to the water at a depth of 0.35 m .
Space for working and answer
13. (continued)
(b) The student repeats the experiment with a different liquid.

The pressure meter is set to zero before the glass tube is lowered into the liquid.
The student takes measurements of the pressure at various depths below the surface of the liquid.
The student records the following information.

Depth, $h(\mathrm{~m})$	Pressure, $p(\mathrm{kPa})$
0.10	1.2
0.20	2.5
0.30	3.6
0.40	4.9
0.50	6.2

(i) Using the square-ruled paper on page 43, draw a graph of p against h.
(Additional graph paper, if required, can be found on page 44.)
(ii) Calculate the gradient of your graph.

Space for working and answer
(iii) Determine the density of this liquid.

Space for working and answer

Back to Table

Question			Answer	Max mark	Additional guidance
13.	(a)		$\begin{align*} & p=1.00 \times 10^{3} \times 9.8 \times 0.35 \tag{1}\\ & p=3.4 \times 10^{3} \mathrm{~Pa} \tag{1} \end{align*}$	2	Accept: 3, 3.43, 3.430
	(b)	(i)	Suitable scales with labels on axes (quantity and units) Correct plotting of points Appropriate line of best fit	3	Allow for axes starting at zero or broken axes or at an appropriate value. Accuracy of plotting should be easily checkable with the scale chosen. If the origin is shown the scale must either be continuous or the axis must be 'broken'. Otherwise maximum 2 marks. Do not penalise if the candidate plots h against p.
		(ii)	$\begin{align*} & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & m=\frac{4.9 \times 10^{3}-1.2 \times 10^{3}}{0.40-0.10} \tag{1}\\ & =12000\left(\mathrm{~Pa} \mathrm{~m}^{-1}\right) \tag{1} \end{align*}$	2	Must be consistent with graph drawn for (b)(i). Candidates are asked to calculate the gradient of their graph. Tolerance required depending upon best fit line drawn by the candidate. Accept: $\begin{align*} & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & m=\frac{4 \cdot 9-1 \cdot 2}{0 \cdot 40-0 \cdot 10} \tag{1}\\ & =12\left(\mathrm{kPa} \mathrm{~m}^{-1}\right) \tag{1} \end{align*}$

		Answer	Max mark	Additional guidance
13.	(iii)	$\begin{align*} & \text { (gradient }=\rho g \text {) } \\ & 12000=\rho g \tag{1}\\ & \rho=1 \cdot 2 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3} \tag{1} \end{align*}$	2	OR consistent with (b)(ii) $\text { If } m=12 \text { in (b)(ii) }$ $\begin{align*} & 12=\rho g \\ & \rho=1 \cdot 2 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3} \tag{1} \end{align*}$ If candidate arrives at this answer then they have taken into consideration the prefix (kPa). If the candidate has drawn a straight line through the origin (tolerance within ± 1 full division), then any point on the line, within \pm $1 / 2$ division tolerance, can be used to calculate the density using $p=\rho g h$. If the candidate has used a point on their line and uses continuous scales from zero, but has not extended their line back through the origin, then use the ruler tool to confirm that their line passes through the origin within tolerance. If the line drawn (or extrapolated line 'created' on Assessor) does NOT pass through the origin within ± 1 full division tolerance, the gradient of the line must be used and not one single point selected, otherwise 0 marks.

Back to Table

Question		Answer	Max mark	Additional guidance
13.	(iii)	continued		If candidate has chosen an appropriate point on their line, 1 mark for correct substitution 1 mark for final answer. If the candidate uses a broken scale on either axis, or does not start their scale at zero, they must use the gradient in their calculation of ρ, otherwise 0 marks. If candidate has plotted h against p, the formula becomes $\rho g=\frac{1}{\text { gradient }}$ otherwise 0 marks for the 'gradient' method. The method by selecting a valid point is can still be used, and the criteria above apply.

[END OF MARKING INSTRUCTIONS]

Date - Not applicable
Duration - 45 minutes

Total marks - 25
Attempt ALL questions.

You may use a calculator.

Instructions for the completion of Paper 1 are given on page 02 of your answer booklet S857/76/02.
Record your answers on the answer grid on page 03 of your answer booklet.
Reference may be made to the data sheet on page 02 of this question paper and to the relationships sheet S857/76/22.

Space for rough work is provided at the end of this booklet.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Back to Table

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value			
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$			
Magnitude of the charge on an electron	e	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$			
Universal Constant of Gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$			
Gravitational acceleration on Earth	g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$			
Hubble's constant						H_{0}	$2.3 \times 10^{-18} \mathrm{~s}^{-1}$	
:---	:---							

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
			Lasers		
			Element	Wavelength/nm	Colour
Sodium	589	Yellow			

PROPERTIES OF SELECTED MATERIALS

Substance	Density $/ \mathrm{kg} \mathrm{m}^{-3}$	Melting point/K	Boiling point/K
Aluminium	$2 \cdot 70 \times 10^{3}$	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	$1 \cdot 29$	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Total marks - 25
Attempt ALL questions

1. The following velocity-time graph represents the vertical motion of a ball.

Which of the following acceleration-time graphs represents the same motion?
A acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

B acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

C acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

D acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

E acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$

Back to Table

2. A train accelerates uniformly from $5.0 \mathrm{~m} \mathrm{~s}^{-1}$ to $12.0 \mathrm{~m} \mathrm{~s}^{-1}$ while travelling a distance of 119 m along a straight track.
The acceleration of the train is
A $\quad 0.50 \mathrm{~m} \mathrm{~s}^{-2}$
B $\quad 0.70 \mathrm{~m} \mathrm{~s}^{-2}$
C $\quad 1.2 \mathrm{~m} \mathrm{~s}^{-2}$
D $\quad 7.0 \mathrm{~m} \mathrm{~s}^{-2}$
E $\quad 14 \mathrm{~ms}^{-2}$.
3. Two blocks are linked by a newton balance of negligible mass.

The blocks are placed on a level, frictionless surface. A force of 18.0 N is applied to the blocks as shown.

The reading on the newton balance is
A $\quad 3.6 \mathrm{~N}$
B $\quad 7.2 \mathrm{~N}$
C $\quad 9.0 \mathrm{~N}$
D $\quad 10.8 \mathrm{~N}$
E $\quad 18.0 \mathrm{~N}$.
4. A block of wood slides with a constant velocity down a slope. The slope makes an angle of 30.0° with the horizontal as shown. The mass of the block is 2.0 kg .

The magnitude of the force of friction acting on the block is

A	1.0 N
B	1.7 N
C	9.8 N
D	17 N
E	19.6 N.

5. The diagram shows the masses and velocities of two trolleys just before they collide on a level bench.

After the collision, the trolleys move along the bench joined together.
The kinetic energy lost in this collision is
A 0 J
B 6.0 J
C 12 J
D 18 J
E $\quad 24 \mathrm{~J}$.

Back to Table

6. The graph shows the force that acts on an object over a time interval of $8 \cdot 0$ seconds.

The momentum gained by the object during the 8.0 seconds is
A $12 \mathrm{kgm} \mathrm{s}^{-1}$
B $\quad 32 \mathrm{kgm} \mathrm{s}^{-1}$
C $44 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
D $52 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 80 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$.
7. A javelin is thrown at an angle of $60 \cdot 0^{\circ}$ to the horizontal with a speed of $20.0 \mathrm{~m} \mathrm{~s}^{-1}$.

The javelin is in flight for 3.50 s .
The effects of air resistance can be ignored.
The horizontal distance travelled by the javelin is
A $\quad 15.3 \mathrm{~m}$
B $\quad 35.0 \mathrm{~m}$
C $\quad 60.6 \mathrm{~m}$
D $\quad 70.0 \mathrm{~m}$
E $\quad 121 \mathrm{~m}$.

Back to Table

8. Two small asteroids are 12 m apart.

The masses of the asteroids are $2.0 \times 10^{3} \mathrm{~kg}$ and $0.050 \times 10^{3} \mathrm{~kg}$.
The gravitational force acting between the asteroids is
A $\quad 1.2 \times 10^{-9} \mathrm{~N}$
B $\quad 4.6 \times 10^{-8} \mathrm{~N}$
C $\quad 5.6 \times 10^{-7} \mathrm{~N}$
D $\quad 1.9 \times 10^{-6} \mathrm{~N}$
E $\quad 6.8 \times 10^{3} \mathrm{~N}$.
9. A spaceship on a launch pad is measured to have a length L.

This spaceship has a speed of $2.5 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ as it passes a planet.
Which row in the table describes the length of the spaceship as measured by the pilot in the spaceship and an observer on the planet?

	Length measured by pilot in the spaceship	Length measured by observer on the planet
A	L	greater than L
B	L	L
C	L	less than L
D	greater than L	L
E	less than L	less than L

[Turn over

Back to Table

10. The siren on an ambulance is emitting sound with a constant frequency of 900 Hz . The ambulance is travelling at a constant speed of $25 \mathrm{~m} \mathrm{~s}^{-1}$ as it approaches and passes a stationary observer. The speed of sound in air is $340 \mathrm{~m} \mathrm{~s}^{-1}$.
Which row in the table shows the frequency of the sound heard by the observer as the ambulance approaches and as it moves away from the observer?

	Frequency as ambulance approaches (Hz)	Frequency as ambulance moves away (Hz)
A	900	838
B	971	838
C	838	900
D	971	900
E	838	971

11. Cosmic microwave background radiation and Olbers' paradox provide evidence for

A the photoelectric effect
B the Bohr model of the atom
C the theory of special relativity
D the Big Bang theory
E Newton's Law of Universal Gravitation.
12. A student makes the following statements about particles in electric fields.

I A neutron experiences a force in an electric field.
II When an alpha particle is moved in an electric field work is done.
III An electric field applied to a conductor causes the free electrons in the conductor to move.

Which of the statements is/are correct?
A II only
B III only
C I and II only
D II and III only
E I, II and III

Back to Table

13. The electric field patterns around charged particles Q, R and S are shown.

Which row in the table shows the charges on particles Q, R and S ?

	Charge on Q	Charge on R	Charge on S
A	negative	negative	positive
B	positive	positive	negative
C	negative	positive	negative
D	negative	negative	negative
E	positive	positive	positive

Back to Table

14. A student makes the following statements about an electron.

I An electron is a boson.
II An electron is a lepton.
III An electron is a fermion.
Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E II and III only
15. The last two changes in a radioactive decay series are shown below.

A Bismuth nucleus emits a beta particle and its product, a Polonium nucleus, emits an alpha particle.

$$
{ }_{Q}^{\mathrm{P}} \mathrm{Bi} \xrightarrow[\text { decay }]{\beta}{ }_{5}^{\mathrm{R}} \mathrm{Po} \xrightarrow[\text { decay }]{\alpha}{ }_{82}^{208} \mathrm{~Pb}
$$

Which numbers are represented by $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S ?

	P	Q	R	S
A	210	83	208	81
B	210	83	210	84
C	211	85	207	86
D	212	83	212	84
E	212	85	212	84

Back to Table

16. Light from a point source is incident on a screen. The screen is 3.0 m from the source. The irradiance at the screen is $8.0 \mathrm{Wm}^{-2}$.
The light source is now moved to a distance of 12 m from the screen.
The irradiance at the screen is now
A $\quad 0.50 \mathrm{Wm}^{-2}$
B $\quad 2.0 \mathrm{Wm}^{-2}$
C $\quad 4.0 \mathrm{Wm}^{-2}$
D $\quad 6.0 \mathrm{Wm}^{-2}$
E $\quad 8.0 \mathrm{Wm}^{-2}$.
17. S_{1} and S_{2} are sources of coherent waves.

An interference pattern is obtained between X and Y .

The first order maximum occurs at P , where $\mathrm{S}_{1} \mathrm{P}=200 \mathrm{~mm}$ and $\mathrm{S}_{2} \mathrm{P}=180 \mathrm{~mm}$.
For the third order maximum, at R, the path difference $\left(S_{1} R-S_{2} R\right)$ is
A 20 mm
B $\quad 30 \mathrm{~mm}$
C 40 mm
D 50 mm
E 60 mm .

Back to Table

18. In an atom, a photon is emitted when an electron makes a transition from a higher energy level to a lower energy level as shown.

The wavelength of the radiation emitted due to an electron transition between the two energy levels shown is

A $\quad 7.31 \times 10^{-8} \mathrm{~m}$
B $\quad 9.12 \times 10^{-8} \mathrm{~m}$
C $\quad 1.21 \times 10^{-7} \mathrm{~m}$
D $\quad 8.23 \times 10^{6} \mathrm{~m}$
E $\quad 2.47 \times 10^{15} \mathrm{~m}$.
19. A ray of red light travels from air into water.

Which row in the table describes the change, if any, in speed and frequency of a ray of red light as it travels from air into water?

	Speed	Frequency
A	stays constant	decreases
B	increases	increases
C	increases	stays constant
D	decreases	stays constant
E	decreases	decreases

Back to Table

20. The rms voltage of the mains supply is 230 V .

The approximate value of the peak voltage is
A 115 V
B 163 V
C 325 V
D 460 V
E 651 V .
21. An oscilloscope is connected to the output terminals of a signal generator.

The trace displayed on the screen is shown.

The timebase of the oscilloscope is set at $30 \mathrm{~ms} / \mathrm{div}$.
The frequency of the output signal from the signal generator is
A $\quad 4.2 \times 10^{-3} \mathrm{~Hz}$
B $8.3 \times 10^{-3} \mathrm{~Hz}$
C $\quad 0.12 \mathrm{~Hz}$
D $\quad 4.2 \mathrm{~Hz}$
E $\quad 8 \cdot 3 \mathrm{~Hz}$.

Back to Table

22. In the diagrams below, each resistor has the same resistance.

Which combination has the least value of the effective resistance between the terminals X and Y ?

A

B

C

D

E

23. Four resistors each of resistance 20Ω are connected to a 60 V supply of negligible internal resistance as shown.

The potential difference across PQ is
A 12 V
B $\quad 15 \mathrm{~V}$
C 20 V
D 24 V
E 30 V .

Back to Table

24. The EMF of a battery is

A the total energy supplied by the battery
B the voltage lost due to the internal resistance of the battery
C the total charge that passes through the battery
D the number of coulombs of charge passing through the battery per second
E the energy supplied to each coulomb of charge passing through the battery.
25. A student carries out three experiments to investigate the charging of a capacitor using a DC supply.
The graphs obtained from the experiments are shown.

The axes of the graphs have not been labelled.
Which row in the table shows the labels for the axes of the graphs?

	Graph 1	Graph 2	Graph 3
A	voltage and time	charge and voltage	current and time
B	current and time	voltage and time	charge and voltage
C	current and time	charge and voltage	voltage and time
D	voltage and time	current and time	charge and voltage
E	charge and voltage	current and time	voltage and time

Marking instructions for each question

Question	Answer	Max mark
1.	C	1
2.	A	1
3.	B	1
4.	C	1
5.	C	1
6.	C	1
7.	B	1
8.	B	1
9.	C	1
10.	B	1
11.	D	1
12.	D	1
13.	B	1
14.	E	1
15.	D	1
16.	A	1
17.	E	1
18.	C	1
19.	D	1
20.	C	1
21.	E	1
22.	A	1
23.	A	1
24.	E	1
25.	D	1

[END OF SPECIMEN MARKING INSTRUCTIONS]
\square

National

S857/76/01

Date - Not applicable
Duration - 2 hours 15 minutes

Fill in these boxes and read what is printed below.

Full name of centre

Town

\square

Forename(s)

Surname

Number of seat

Date of birth

Scottish candidate number

Total marks - 130
Attempt ALL questions.

You may use a calculator.

Reference may be made to the data sheet on page 02 of this booklet and to the relationships sheet S857/76/11.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.

Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. Score through your rough work when you have written your final copy.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Magnitude of the charge on an electron	e	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Universal Constant of Gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Gravitational acceleration on Earth	g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$	Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Hubble's constant	H_{0}	$2.3 \times 10^{-18} \mathrm{~s}^{-1}$			

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	$\begin{aligned} & 644 \\ & 509 \\ & 480 \end{aligned}$	Red Green Blue
				Lasers	
			Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $/ \mathrm{kg} \mathrm{m}^{-3}$	Melting point/K	Boiling point/K
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots.
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	\ldots.	$\ldots \ldots$
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Back to Table

Total marks - 130

1. A car is travelling at a constant speed of $15.0 \mathrm{~m} \mathrm{~s}^{-1}$ along a straight, level road. It passes a motorcycle, which is stationary at the roadside.

At the instant the car passes, the motorcycle starts to move in the same direction as the car.

The graph shows the motion of each vehicle from the instant the car passes the motorcycle.

(a) Calculate the initial acceleration of the motorcycle. Space for working and answer
(b) Determine the distance between the car and motorcycle at 4.0 s .
pace jor woikimg aita umswet Space for working and answer

1. (continued)

(c) The total mass of the motorcycle and rider is 290 kg . At a time of 2.0 s the driving force on the motorcycle is 1800 N .
(i) Determine the frictional force acting on the motorcycle at this time.
Space for working and answer
(ii) Explain why the driving force must be increased with time to maintain a constant acceleration.

1. (continued)
(d) The driving force on the motorcycle reaches its maximum value at $5 \cdot 0 \mathrm{~s}$ and then remains constant.
The velocity-time graph for the motorcycle during the first 4.0 s is shown below.
velocity $\left(\mathrm{m} \mathrm{s}^{-1}\right) \mid$

Extend the graph to show how the velocity of the motorcycle varies between 4.0 s and 10.0 s .
Additional numerical values on the velocity axis are not required.
(An additional graph, if required, can be found on page 42.)

Back to Table

Marking instructions for each question

Question			Expected response	Max mark	Additional guidance
1.	(a)		$\begin{align*} v & =u+a t \tag{1}\\ 20 \cdot 0 & =0+a \times 4 \cdot 0 \tag{1}\\ a & =5.0 \mathrm{~m} \mathrm{~s}^{-2} \tag{1} \end{align*}$	3	Accept 5, 5•00, 5•000
	(b)		$\begin{align*} & \text { motorcycle } \\ & s=\text { area under graph } \tag{1}\\ & s=\frac{1}{2} \times 4 \cdot 0 \times 20 \cdot 0 \tag{1}\\ & \text { car } \\ & s=\text { area under graph } \\ & s=4 \cdot 0 \times 15 \cdot 0 \tag{1}\\ & s_{\text {between }}=(4 \cdot 0 \times 15 \cdot 0)-\left(\frac{1}{2} \times 4 \cdot 0 \times 20 \cdot 0\right) \\ & s_{\text {between }}=20 \mathrm{~m} \tag{1} \end{align*}$	4	Accept 20.0, 20.00 Alternative method motorcycle $\begin{aligned} & s=u t+\frac{1}{2} a t^{2} \\ & s=\frac{1}{2} \times 5 \cdot 0 \times 4 \cdot 0^{2} \end{aligned}$ car $\begin{aligned} & d=\bar{v} t \\ & d=15 \times 4 \cdot 0 \end{aligned}$ 1 mark for both relationships 1 mark for each substitution 1 mark for final answer
	(c)	(i)	$\begin{align*} & F=m a \tag{1}\\ & F=290 \times 5 \cdot 0 \tag{1} \end{align*}$ $\begin{align*} & F=F_{\text {Driving }}-F_{\text {Fricition }} \\ & (290 \times 5 \cdot 0)=1800-F_{\text {Fricition }} \tag{1}\\ & F_{\text {Fricioion }}=350 \mathrm{~N} \tag{1} \end{align*}$	4	Or consistent with (a) Accept 400, 350.0, 350.00
		(ii)	Frictional force /friction/drag/air resistance increases with speed Driving force must be increased to ensure a constant unbalanced force	2	
	(d)		 graph curves (gradually, away from velocity axis) after 5 s	1	Line can level out, but not curve downwards.

2. When a car brakes kinetic energy is turned into heat and sound.

In order to make cars more efficient some manufacturers have developed kinetic energy recovery systems (KERS). These systems store some of the energy that would otherwise be lost as heat and sound.
Estimate the maximum energy that could be stored in such a system when a car brakes.
Cleary show your working for the calculation and any estimates you have made. 4
Space for working and answer

Back to Table

| Question | | Expected response | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :--- | :---: | :--- |
| 2. | | | Estimate of car mass
 $(500 \mathrm{~kg}<$ mass $<3000 \mathrm{~kg})$
 Estimate of car speed
 $\left(20 \mathrm{~m} \mathrm{~s}^{-1}<\right.$ speed $\left.<70 \mathrm{~m} \mathrm{~s}^{-1}\right)$
 $E_{k}=\frac{1}{2} m v^{2}$ (1)
 Final answer | Both estimates must be within
 the given tolerances in order to
 access the final 1 mark. |

3. (a) A gymnast of mass 42 kg is practising on a trampoline.

(i) At maximum height the gymnast's feet are 2.0 m above the trampoline.
Show that the speed of the gymnast, as they land on the trampoline, is $6.3 \mathrm{~m} \mathrm{~s}^{-1}$.
Space for working and answer
(ii) The gymnast rebounds with a speed of $5 \cdot 3 \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate the magnitude of the change in momentum of the gymnast.

Space for working and answer
3. (a) (continued)
(iii) The gymnast was in contact with the trampoline for 0.50 s .

Calculate the magnitude of the average force exerted by the trampoline on the gymnast.
Space for working and answer
3. (continued)
(b) Another gymnast is practising on a piece of equipment called the rings. The gymnast grips two wooden rings suspended above the gym floor by strong vertical ropes as shown.

The gymnast now stretches out their arms until each rope makes an angle of 10° with the vertical as shown.

Explain why the tension in each rope increases as the gymnast stretches out their arms.

Page 11
Back to Table

Question			Expected response	Max mark	Additional guidance
3.	(a)	(i)	$\begin{align*} & v^{2}=u^{2}+2 a s \tag{1}\\ & v^{2}=0+2 \times 9 \cdot 8 \times 2 \cdot 0 \tag{1}\\ & v=6 \cdot 3 \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { OR } \\ &(m) g h=\frac{1}{2}(m) v^{2} \tag{1}\\ &(42) \times 9 \cdot 8 \times 2 \cdot 0=\frac{1}{2}(42) v^{2} \tag{1}\\ & v=6 \cdot 3 \mathrm{~m} \mathrm{~s}^{-1} \end{align*}$	2	SHOW question. A maximum of 1 mark is available if the final line is not shown.
		(ii)	$\begin{align*} & \Delta p=m v-m u \tag{1}\\ & \Delta p=(42 \times(5 \cdot 3))-(42 \times(-6 \cdot 3)) \tag{1}\\ & \Delta p=490 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Accept 500, 487, 487.2 Accept alternative direction convention.
		(iii)	$\begin{align*} F t & =m v-m u \tag{1}\\ F \times 0 \cdot 50 & =490 \tag{1}\\ F & =980 \mathrm{~N} \tag{1} \end{align*}$	3	Or consistent with (a)(ii) Accept 1000, $980 \cdot 0$
	(b)		Tension (in rope) now has a horizontal component Vertical component of tension (in rope) is unchanged	2	Independent marks Statements must refer to forces on rope.

4. Muons are sub-atomic particles produced when cosmic rays enter the atmosphere about 10 km above the surface of the Earth.

Muons have a mean lifetime of $2.2 \times 10^{-6} \mathrm{~S}$ in their frame of reference. Muons are travelling at $0.995 c$ relative to an observer on Earth.
(a) Show that the mean distance travelled by the muons in their frame of reference is 660 m .
(b) Calculate the mean lifetime of the muons measured by an observer on Earth.
Space for working and answer
4. (continued)
(c) Explain why a greater number of muons are detected on the surface of the Earth than would be expected if relativistic effects were not taken into account.

Back to Table

Question		Expected response	Max mark	Additional guidance
4.	(a)	$\begin{align*} & d=\bar{v} t \tag{1}\\ & d=\left(3.00 \times 10^{8} \times 0.995\right) \times 2.2 \times 10^{-6} \tag{1}\\ & d=660 \mathrm{~m} \end{align*}$	2	SHOW question. A maximum of 1 mark is available if the final line is not shown.
	(b)	$\begin{align*} & t^{\prime}=\frac{t}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \tag{1}\\ & t^{\prime}=\frac{2 \cdot 2 \times 10^{-6}}{\sqrt{1-\left(\frac{0.995}{1}\right)^{2}}} \tag{1}\\ & t^{\prime}=2 \cdot 2 \times 10^{-5} \mathrm{~s} \tag{1} \end{align*}$	3	Accept 2, 2•20, 2-203
	(c)	The mean lifetime of the muon is greater for an observer in Earth's frame of reference OR The mean distance travelled by a muon is shorter in the muon's frame of reference	1	

5. (a) The diagram below represents part of the emission spectrum for the element hydrogen.

Spectrum P is from a laboratory source.
Spectrum Q shows the equivalent lines from a distant galaxy as observed on the Earth.
(i) Explain why the lines on spectrum Q are in a different position to those on spectrum P .
(ii) One of the lines in spectrum P has a wavelength of 656 nm . The equivalent line in spectrum Q is measured to have a wavelength of 676 nm .
Determine the recessional velocity of the galaxy.
Space for working and answer
5. (continued)
(b) The recessional velocity of another distant galaxy is $1.2 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate the approximate distance to this galaxy.
Space for working and answer
(c) A student explains the expansion of the Universe using an 'expanding balloon model'.
The student draws 'galaxies' on a balloon and then inflates it.

Using your knowledge of physics, comment on this model.

Back to Table

Question			Expected response	$\begin{gather*} \text { Max } \\ \text { mark } \tag{1}\\ \hline \end{gather*}$	Additional guidance
5.	(a)	(i)	The galaxy is moving away from Earth The apparent wavelengths of the lines of the hydrogen spectrum from the galaxy have increased OR The apparent frequencies of the lines of the hydrogen spectrum from the galaxy are less than the corresponding frequencies from the laboratory source OR The frequency of the light from the galaxy has shifted towards the red end of the spectrum OR Observed light from the galaxy shows redshift	2	
		(ii)	$\begin{align*} & z=\frac{\left(\lambda_{\text {obs }}-\lambda_{\text {rest }}\right)}{\lambda_{\text {rest }}} \tag{1}\\ & z=\frac{\left(676 \times 10^{-9}-656 \times 10^{-9}\right)}{656 \times 10^{-9}} \tag{1}\\ & z=\frac{v}{c} \tag{1}\\ & \frac{\left(676 \times 10^{-9}-656 \times 10^{-9}\right)}{656 \times 10^{-9}}=\frac{v}{3 \cdot 00 \times 10^{8}} \tag{1}\\ & v=9 \cdot 15 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	5	Accept 9•1,9•146,9•1463
	(b)		$\begin{align*} v & =H_{0} d \tag{1}\\ 1 \cdot 2 \times 10^{7} & =2 \cdot 3 \times 10^{-18} \times d \tag{1}\\ d & =5 \cdot 2 \times 10^{24} \mathrm{~m} \tag{1} \end{align*}$	3	Accept 5, 5•22, 5•217

6. A linear accelerator is used to accelerate protons.

The accelerator consists of hollow metal tubes placed in a vacuum.

The diagram shows the path of the protons through the accelerator.
Protons are accelerated across the gaps between the tubes by a potential difference of 35 kV .
(a) The protons are travelling at $1.2 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ at point R.
(i) Show that the work done on a proton as it accelerates from R to S is $5.6 \times 10^{-15} \mathrm{~J}$.
Space for working and answer
(ii) Determine the speed of the proton as it reaches S.
6. (continued)
(b) (i) Explain why an alternating supply is used in the linear accelerator. 1
(ii) Suggest one reason why the lengths of the tubes increase along the accelerator.
(c) In the Large Hadron Collider (LHC) beams of hadrons travel in opposite directions inside a circular accelerator and then collide. The accelerating particles are guided along the collider using strong magnetic fields.
The diagram shows a proton entering a magnetic field.

In which direction is this proton initially deflected?

Question			Expected response	Max mark	Additional guidance
6.	(a)	(i)	$\begin{align*} & W=Q V \tag{1}\\ & W=1 \cdot 60 \times 10^{-19} \times 3 \cdot 5 \times 10^{4} \tag{1}\\ & W=5 \cdot 6 \times 10^{-15} \mathrm{~J} \end{align*}$	2	SHOW question. A maximum of 1 mark is available if the final line is not shown.
		(ii)	$\begin{align*} & E_{k} \text { at } \mathrm{R} \\ & E_{k}=\frac{1}{2} m v^{2} \tag{1}\\ & E_{k}=0 \cdot 5 \times 1.673 \times 10^{-27} \times\left(1 \cdot 2 \times 10^{6}\right)^{2} \tag{1}\\ & \\ & E_{k} \text { at } \mathrm{S} \\ & E_{k}=\frac{1}{2} m v^{2} \\ & {\left[0 \cdot 5 \times 1.673 \times 10^{-27} \times\left(1.2 \times 10^{6}\right)^{2}\right]} \\ & +5 \cdot 6 \times 10^{-15} \\ & =0.5 \times 1.673 \times 10^{-27} \times v^{2} \\ & v=2.9 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \quad \text { addition (1) } \\ & \text { substitution (1) } \end{align*}$	5	Accept 3,2•85,2•852
	(b)	(i)	To ensure the (accelerating) force is in the same direction OR To ensure the protons accelerate in the same direction OR To ensure that the direction of the electric field is correct when the proton passes through a tube	1	
	(b)	(ii)	Alternating voltage has a constant frequency (rather than a frequency that changes) OR As speed of proton increases, they travel further in the same time	1	
	(c)		Downwards	1	

7. The following diagram gives information about the Standard Model of fundamental particles and interactions.

Use information from the diagram and your knowledge of the Standard Model to answer the following questions.
(a) Explain why particles such as leptons and quarks are known as fundamental particles.
(b) A particle called the sigma plus $\left(\Sigma^{+}\right)$has a charge of $+1 e$. It contains two different types of quark. It has two up quarks each having a charge of $+\frac{2}{3} e$ and one strange quark.

Determine the charge on the strange quark.

7. (continued)

(c) Explain why the gluon cannot be the force mediating particle for the gravitational force.
(d) Compare the relative strength of the strong force with the weak nuclear force in terms of orders of magnitude.
(e) A neutron decays into a proton, an electron and an antineutrino.

The equation for this decay is

$$
{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{1}^{1} \mathrm{p}+{ }_{-1}^{0} \mathrm{e}+\bar{v}_{e}
$$

State the name of this type of decay.

Back to Table

Question		Expected response	Max mark	Additional guidance	
7.	(a)	Fundamental particles cannot be subdivided	1		
	(b)		$-\frac{1}{3} e$	1	
	(c)	The strong force (associated with the gluon) has a short range. (1) The gravitational force (requires a force mediating particle that) has (1) infinite range.	$\mathbf{2}$		
	(d)	(The strong force is) 13 (orders of magnitude) greater (than the weak force)	1		
	(e)	beta decay			

Back to Table

8. The following statement represents a fusion reaction.

$$
4{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+2{ }_{1}^{0} \mathrm{e}^{+}
$$

The masses of the particles involved in the reaction are shown in the table.

Particle	Mass (kg)
${ }_{1}^{1} \mathrm{H}$	1.673×10^{-27}
${ }_{2}^{4} \mathrm{He}$	6.646×10^{-27}
${ }_{1}^{0} \mathrm{e}^{+}$	negligible

(a) Calculate the energy released in this reaction.

Space for working and answer
Themase ofter

8. (continued)

(b) Calculate the energy released when 0.20 kg of hydrogen is converted to helium by this reaction.
Space for working and answer
(c) Fusion reactors are being developed that use this type of reaction as an energy source. Explain why this type of fusion reaction is hard to sustain in these reactors.
(c) energy source ban

Question		Expected response	Max mark	Additional guidance
8.	(a)	mass loss $\begin{align*} & m=\left(4 \times 1 \cdot 673 \times 10^{-27}\right)-6 \cdot 646 \times 10^{-27} \tag{1}\\ & E=m c^{2} \tag{1}\\ & E=\left(\left(4 \times 1 \cdot 673 \times 10^{-27}\right)-\right. \\ & \left.\quad\left(6 \cdot 646 \times 10^{-27}\right)\right) \times\left(3.00 \times 10^{8}\right)^{2} \tag{1} \end{align*}$ $\begin{equation*} E=4 \cdot 14 \times 10^{-12} \mathrm{~J} \tag{1} \end{equation*}$	4	Accept 4•1, 4.140, 4.1400
	(b)	0.20 kg hydrogen has $\begin{equation*} \frac{0 \cdot 20}{1 \cdot 673 \times 10^{-27}}\left(=1 \cdot 195 \times 10^{26} \text { atoms }\right) \tag{1} \end{equation*}$ provides $\begin{equation*} \frac{1 \cdot 195 \times 10^{26}}{4}=0.2989 \times 10^{26} \text { reactions } \tag{1} \end{equation*}$ releases $\begin{align*} & 0.2989 \times 10^{26} \times 4 \cdot 14 \times 10^{-12} \\ & =1 \cdot 2 \times 10^{14} \mathrm{~J} \tag{1} \end{align*}$	3	Accept 1, 1•24,1•237 Multiplying the number of hydrogen nuclei by the energy for each reaction is wrong physics.
	(c)	The particles involved in fusion reactions must be at a high temperature	1	

9. A student carries out an experiment to investigate how irradiance on a surface varies with distance from a small lamp.

Irradiance is measured using a light meter.
The distance between the small lamp and the light meter is measured with a metre stick.

The apparatus is set up in a darkened laboratory as shown.

The following results are obtained.

Distance from source (m)	0.200	0.300	0.400	0.500
Irradiance (units)	672	302	170	110

(a) State what is meant by the term irradiance.
(b) Use all the data to find the relationship between irradiance I and distance d from the source.
You may wish to use the square-ruled paper on page 37.
Space for working and answer
9. (continued)
(c) Suggest the purpose of the black cloth placed on top of the bench in the experimental setup.
(d) The small lamp is replaced by a laser.

Light from the laser is shone onto the light meter.
A reading is taken from the light meter when the distance between the light meter and the laser is 0.200 m .
The distance is now increased to 0.500 m .
The reading on the light meter does not change.
Suggest why the reading on the light meter does not change.

10. A metal plate emits electrons when certain wavelengths of electromagnetic radiation are incident on it.

The work function of the metal is $2.24 \times 10^{-19} \mathrm{~J}$.
(a) Electrons are released when electromagnetic radiation of wavelength 525 nm is incident on the surface of the metal plate.
(i) Show that the energy of each photon of the incident radiation is $3.79 \times 10^{-19} \mathrm{~J}$.

Space for working and answer
(ii) Determine the maximum kinetic energy of an electron released from the surface of the metal plate.
10. (continued)
(b) The frequency of the incident radiation in now varied through a range of values.

The maximum kinetic energy of electrons leaving the metal plate is determined for each frequency.
A graph of this maximum kinetic energy against frequency is shown.

(i) Explain why no electrons leave the metal plate when the frequency
of the incident radiation is below f_{0}.

Space for working and answer
(ii) Calculate the frequency f_{0}.

Back to Table

10. (continued)
(c) The use of analogies from everyday life can help better understanding of physics concepts. Throwing different balls at a coconut shy to dislodge a coconut is an analogy that can help understanding of the photoelectric effect .

Use your knowledge of physics to comment on this analogy.

Back to Table

Question			Expected response	Max mark	Additional guidance
10.	(a)	(i)	$\begin{align*} & v=f \lambda \tag{1}\\ & 3 \cdot 00 \times 10^{8}=f \times 525 \times 10^{-9} \tag{1}\\ & E=h f \tag{1}\\ & E=6 \cdot 63 \times 10^{-34} \times\left(\frac{3 \cdot 00 \times 10^{8}}{525 \times 10^{-9}}\right) \tag{1}\\ & \quad E=3.79 \times 10^{-19} \mathrm{~J} \end{align*}$	4	SHOW question. A maximum of 3 marks is available if the final line is not shown.
		(ii)	$\begin{aligned} & \left(E_{k}=3 \cdot 79 \times 10^{-19}-2 \cdot 24 \times 10^{-19}\right) \\ & E_{k}=1.55 \times 10^{-19} \mathrm{~J} \end{aligned}$	1	
	(b)	(i)	Photons with frequency below f_{0} do not have enough energy to release electrons	1	
		(ii)	$\begin{align*} E & =h f_{0} \tag{1}\\ 2 \cdot 24 \times 10^{-19} & =\left(6 \cdot 63 \times 10^{-34}\right) \times f_{0} \tag{1}\\ f_{0} & =3 \cdot 38 \times 10^{14} \mathrm{~Hz} \tag{1} \end{align*}$	3	Accept 3•4, 3•379, 3•3786

11. A helium-neon laser produces a beam of monochromatic light.

A student directs this laser beam onto a double slit arrangement as shown in the diagram.

A pattern of bright red fringes is observed on the screen.
(a) Explain, in terms of waves, why bright red fringes are produced.

Back to Table

11. (continued)
(b) The average separation Δx between adjacent fringes is given by the relationship

$$
\Delta x=\frac{\lambda D}{d}
$$

where: λ is the wavelength of the light
D is the distance between the double slit and the screen d is the distance between the two slits
The diagram shows the value measured by the student of the distance between a series of fringes and the uncertainty in this measurement.

The student measures the distance D between the double slit and the screen as $(0.750 \pm 0.001) \mathrm{m}$.
(i) Calculate the best estimate of the distance between the two slits.

An uncertainty in the calculated value is not required.
Space for working and answer
11. (b) (continued)
(ii) The student wishes to determine more precisely the value of the distance between the two slits d.

Show, by calculation, which of the student's measurements should be taken more precisely in order to achieve this.
You must indicate clearly which measurement you have identified. 3
Space for working and answer
(c) The helium-neon laser is replaced by a laser emitting green light. No other changes are made to the experimental set-up.
Explain the effect this change has on the separation of the fringes observed on the screen.

Page 37
Back to Table

Back to Table

Question			Expected response	Max mark	Additional guidance
11.	(a)		Bright fringes are produced by waves meeting in phase/crest to crest/trough to trough	1	
	(b)	(i)	$\begin{align*} & \Delta x=\frac{\lambda D}{d} \\ & \frac{9 \cdot 5 \times 10^{-3}}{4}=\frac{633 \times 10^{-9} \times 0 \cdot 750}{d} \\ & \text { division by } 4 \tag{1}\\ & \text { substitutions } \end{align*}$	3	Accept 2,2•00,1•999 The mark for dividing by 4 is independent
		(ii)	\%uncertainty $\Delta x=\frac{0 \cdot 2 \times 10^{-3} \times 100}{9 \cdot 5 \times 10^{-3}}=2 \cdot 1 \%$ $\%$ uncertainty $D=\frac{0.001 \times 100}{0.750}=0.13 \%$ Improve precision in measurement of Δx	3	
	(c)		Green light has a shorter wavelength Fringes are closer together	2	

12. A technician investigates the path of laser light as it passes through a glass tank filled with water. The light enters the glass tank along the normal at C then reflects off a mirror submerged in the water.

(a) Show that the refractive index of water for this laser light is $1 \cdot 33$. Space for working and answer
(b) The mirror is now adjusted until the light strikes the surface of the water at the critical angle.
(i) State what is meant by the critical angle.
(ii) Calculate the critical angle for this light in the water.

Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
12.	(a)		$\begin{align*} & n=\frac{\sin \theta_{1}}{\sin \theta_{2}} \tag{1}\\ & n=\frac{\sin (51 \cdot 4)}{\sin (36 \cdot 0)} \tag{1}\\ & n=1 \cdot 33 \end{align*}$	2	SHOW question. A maximum of 1 mark is available if the final line is not shown.
	(b)	(i)	(Critical angle is) the angle of incidence that produces an angle of refraction of 90°	1	
		(ii)	$\begin{align*} \sin \theta_{c} & =\frac{1}{n} \tag{1}\\ \sin \theta_{c} & =\frac{1}{1 \cdot 33} \tag{1}\\ \theta_{c} & =48.8^{\circ} \tag{1} \end{align*}$	3	Accept 49, 48.75, 48.753

Back to Table

13. The following circuit is used to determine the internal resistance r of a battery of EMF E.

The variable resistor provides known values of resistance R.
For each value of resistance R the switch S is closed and the current I is noted.
For each current, the value of $\frac{1}{I}$ is calculated.
In one such experiment, the following graph of R against $\frac{1}{I}$ is obtained.

Conservation of energy applied to the complete circuit gives the following relationship.

$$
R=\frac{E}{I}-r
$$

This relationship is in the form of the equation of a straight line

$$
y=m x+c
$$

where m is the gradient and c is the y-intercept.
13. (continued)
(a) Use information from the graph to determine:
(i) the internal resistance of the battery
(ii) the EMF of the battery.

Space for working and answer
(b) The battery is accidentally short-circuited.

Calculate the current in the battery when this happens.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
13.	(a)	(i)	$2 \cdot 5 \Omega$	1	
		(ii)	$\begin{align*} & E=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ & E=\frac{11-0}{0 \cdot 80-0 \cdot 15} \tag{1} \end{align*}$ substitution of two points on line $\begin{equation*} E=17 \mathrm{~V} \tag{1} \end{equation*}$	2	Or consistent with data points chosen
	(b)		$\begin{align*} V & =I R \tag{1}\\ 17 & =I \times 2 \cdot 5 \tag{1}\\ I & =6 \cdot 8 \mathrm{~A} \tag{1} \end{align*}$	3	Or consistent with (a)(i) and (a)(ii)

Back to Table

14. $\mathrm{A} 220 \mu \mathrm{~F}$ capacitor is charged using the circuit shown.

The 12 V battery has negligible internal resistance.

The capacitor is initially uncharged.
The switch S is closed. The charging current is kept constant at $3.0 \times 10^{-5} \mathrm{~A}$ by adjusting the resistance of variable resistor R.
(a) Calculate the resistance of the variable resistor R just after the switch is closed.

Space for working and answer
(b) (i) Calculate the charge on the capacitor 25 s after switch S is closed.

14. (b) (continued)
(ii) Calculate the potential difference across R at this time.

Space for working and answer

Page 45
Back to Table

Back to Table

Question			Expected response	Max mark	Additional guidance
14.	(a)		$\begin{align*} V & =I R \tag{1}\\ 12 & =3 \cdot 0 \times 10^{-5} \times R \tag{1}\\ R & =4 \cdot 0 \times 10^{5} \Omega \tag{1} \end{align*}$	3	Accept 4, 4.00, 4.000
	(b)	(i)	$\begin{align*} & Q=I t \tag{1}\\ & Q=3 \cdot 0 \times 10^{-5} \times 25 \tag{1}\\ & Q=7 \cdot 5 \times 10^{-4} \mathrm{C} \tag{1} \end{align*}$	3	Accept 8, 7•50, 7•500
		(ii)	$\begin{align*} C & =\frac{Q}{V} \tag{1}\\ 220 \times 10^{-6} & =\frac{7 \cdot 5 \times 10^{-4}}{V} \tag{1}\\ V & =3 \cdot 4(\mathrm{~V}) \tag{1} \end{align*}$ Therefore voltage across resistor is $\begin{equation*} 12-3 \cdot 4=8 \cdot 6 \mathrm{~V} \tag{1} \end{equation*}$	4	Or consistent with (b)(i) Accept 9, 8.59, 8.591

15. The electrical conductivity of solids can be explained using band theory.

The diagrams below show the distributions of the valence and conduction bands of materials classified as conductors, insulators and semiconductors.
Shaded areas represent bands occupied by electrons.
The band gap is also indicated.

Material 1

Material 2
(a) State which material is a semiconductor.

Material 3
15. (continued)
(b) An LED is made from semiconductor material that has been doped with impurities to create a p-n junction.
The diagram represents the band structure of an LED.

A voltage is applied across an LED so that it is forward biased and emits light.
Using band theory, explain how the LED emits light.

Back to Table

Question		Expected response	$\begin{array}{c}\text { Max } \\ \text { mark }\end{array}$	Additional guidance	
15.	(a)		Material 2	(1)	
(b)	$\begin{array}{l}\text { (Voltage applied causes) electrons } \\ \text { to move towards conduction band } \\ \text { of p-type } \\ \text { Electrons move/drop from } \\ \text { conduction band to valence band } \\ \text { Photon emitted (when electron }\end{array}$	(1)	(1)		$\begin{array}{l}\text { If candidate does not refer to } \\ \text { either conduction band or } \\ \text { valence band, award 0 marks. } \\ \text { drops) }\end{array}$
$\begin{array}{l}\text { Bands must be named correctly } \\ \text { in first two marking points } \\ \text { ie not valency or conductive. }\end{array}$					
$\begin{array}{l}\text { Award 0 marks for any answer } \\ \text { using recombination of holes } \\ \text { and electrons on its own, with } \\ \text { no reference to band theory. }\end{array}$					
The final mark is dependent					
upon having at least one of the					
first two statements correct.					

16. A group of students carries out an experiment to investigate the transmission of light through an optical fibre.
Red light is transmitted through a loop of optical fibre and detected by a photodiode connected to a voltmeter as shown.

The photodiode produces a voltage proportional to the irradiance of light incident on it.

The students vary the radius, r, of the loop of the optical fibre and measure the voltage produced by the photodiode.

The results are shown in the table.

Radius of loop (mm)	Voltage (V)
5	0.48
10	0.68
15	0.76
20	0.79
30	0.80
40	0.80

(a) Using the square-ruled paper provided on page 38, draw a graph of these results.
16. (continued)
(b) For use in communication systems, the amount of light transmitted through a loop of optical fibre must be at least 75% of the value of the fibre with no loop.
With no loop in this fibre the reading on the voltmeter is 0.80 V .
Use your graph to estimate the minimum radius of loop when using this fibre in communication systems.
(c) Using the same apparatus, the students now wish to determine a better estimate of the true value of minimum radius of loop when using this fibre in communication systems.
Suggest two improvements to the experimental procedure that would achieve this.

Back to Table

Question		Expected response	Max mark	Additional guidance
16.	(a)	Suitable scales with labels on axes (quantity and unit) Points plotted accurately Acceptable line(curve) of best fit	3	
	(b)	$7.5 \mathrm{~mm} \pm 1 \mathrm{~mm}$	1	Or consistent with graph drawn
	(c)	Repeat measurements Smaller steps/divisions/intervals in radius (around the 75% value or equivalent)	2	

[END OF SPECIMEN MARKING INSTRUCTIONS]

Back to Table

Total mark - 25

Attempt ALL questions

1. The graph shows how the speed v of a car varies with time t.

The average speed of the car during the 12.0 s is
A $\quad 1.25 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 2.08 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 2.50 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 7.50 \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 12.5 \mathrm{~m} \mathrm{~s}^{-1}$.
2. A stone is thrown at 50° to the horizontal with a speed of $15 \mathrm{~m} \mathrm{~s}^{-1}$.

Which row in the table gives the horizontal component and the vertical component of the initial velocity of the stone?

	Horizontal component $\left(\mathrm{m} \mathrm{s}^{-1}\right)$	Vertical component $\left(\mathrm{m} \mathrm{s}^{-1}\right)$
A	$15 \sin 50$	$15 \cos 50$
B	$15 \cos 50$	$15 \sin 50$
C	$15 \cos 50$	$15 \sin 40$
D	$15 \cos 40$	$15 \sin 50$
E	$15 \sin 50$	$15 \cos 40$

Back to Table

3. A golfer strikes a golf ball, which then moves off at angle to the ground. The ball follows the path shown.

The graphs show how the horizontal component of the velocity v_{h} and the vertical component of the velocity v_{v} of the ball vary with time t.

The speed of the ball just before it hits the ground is
A $10 \mathrm{~m} \mathrm{~s}^{-1}$
B $30 \mathrm{~m} \mathrm{~s}^{-1}$
C $40 \mathrm{~m} \mathrm{~s}^{-1}$
D $50 \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 70 \mathrm{~ms}^{-1}$.
4. A car accelerates from rest along a straight level road.

The acceleration of the car is constant.
Which pair of displacement-time ($s-t$) and acceleration-time ($a-t$) graphs represent the motion of the car?
A

C

D

E

Back to Table

5. Four masses on a horizontal, frictionless surface are linked together by strings P, Q and R. A constant force is applied as shown.

The tension in the strings is
A greatest in P and least in Q
B greatest in P and least in R
C greatest in R and least in Q
D greatest in R and least in P
E the same in P, Q and R.
6. A student makes the following statements about an elastic collision.

I Total momentum is conserved.
II Total kinetic energy is conserved.
III Total energy is conserved.
Which of these statements is/are correct?
A I only
B II only
C I and II only
D I and III only
E I, II and III

Back to Table

7. The terminal velocity v_{t} of a skydiver is given by the relationship

$$
v_{t}=\sqrt{\frac{2 m g}{\rho A C_{d}}}
$$

where
m is the mass of the skydiver in kg
g is the gravitational field strength in Nkg^{-1}
C_{d} is the drag coefficient
ρ is the density of air in $\mathrm{kg} \mathrm{m}^{-3}$
A is the area of the skydiver in m^{2}.

When in freefall, a skydiver of mass 95 kg has a drag coefficient of 1.0 and a terminal velocity of $44 \mathrm{~m} \mathrm{~s}^{-1}$.
The gravitational field strength is $9.8 \mathrm{Nkg}^{-1}$ and the density of air is $1.21 \mathrm{~kg} \mathrm{~m}^{-3}$.
The area of the skydiver is
A $\quad 0.59 \mathrm{~m}^{2}$
B $\quad 0.79 \mathrm{~m}^{2}$
C $\quad 0.89 \mathrm{~m}^{2}$
D $\quad 4.2 \mathrm{~m}^{2}$
E $\quad 35 \mathrm{~m}^{2}$.
8. A spacecraft is travelling at a constant speed relative to a nearby planet.

A technician on the spacecraft measures the length of the spacecraft as 275 m .
An observer on the planet measures the length of the spacecraft as 125 m .
The speed of the spacecraft relative to the observer on the nearby planet is
A $\quad 1.54 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 2.22 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 2.67 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 7.14 \times 10^{16} \mathrm{~m} \mathrm{~s}^{-1}$.
[Turn over

Back to Table

9. The redshift of a distant galaxy is 0.014 .

According to Hubble's law, the distance of the galaxy from Earth is
A $\quad 9.66 \times 10^{-12} \mathrm{~m}$
B $\quad 1.83 \times 10^{24} \mathrm{~m}$
C $\quad 1.30 \times 10^{26} \mathrm{~m}$
D $\quad 9.32 \times 10^{27} \mathrm{~m}$
E $\quad 6.33 \times 10^{39} \mathrm{~m}$.
10. A student makes the following statements about the Universe.

I The force due to gravity acts against the expansion of the Universe.
II Measurements show the rate of expansion of the Universe is increasing.
III The mass of a galaxy can be estimated by the orbital speed of the stars within the galaxy.

Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E I, II and III

Back to Table

11. An alpha particle is accelerated in an electric field between metal plates P and Q.

The charge on the alpha particle is $3.2 \times 10^{-19} \mathrm{C}$.
The kinetic energy gained by the alpha particle while travelling from plate P to plate Q is $8.0 \times 10^{-16} \mathrm{~J}$.
The potential difference across plates P and Q is
A $\quad 2.6 \times 10^{-34} \mathrm{~V}$
B $\quad 2.0 \times 10^{-4} \mathrm{~V}$
C $\quad 4.0 \times 10^{-4} \mathrm{~V}$
D $\quad 2.5 \times 10^{3} \mathrm{~V}$
E $\quad 5 \cdot 0 \times 10^{3} \mathrm{~V}$.

Back to Table

12. An electron enters a region of uniform magnetic field as shown.

The direction of the magnetic force on the electron immediately after entering the field is
A towards the top of the page
B towards the bottom of the page
C towards the right of the page
D into the page
E out of the page.
13. A student makes the following statements about the Standard Model.

I Every particle has an antiparticle.
II Alpha decay is evidence for the existence of the neutrino.
III The W-boson is associated with the strong nuclear force.
Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E I and III only
14. A nucleus represented by ${ }_{87}^{223} \mathrm{Fr}$ decays by beta emission.

The symbol representing the nucleus formed as a result of this decay is
A $\quad{ }_{87}^{224} \mathrm{Fr}$
B $\quad{ }_{87}^{222} \mathrm{Fr}$
C ${ }_{88}^{223} \mathrm{Ra}$
D $\quad{ }_{86}^{223} \mathrm{Rn}$
E $\quad{ }_{88}^{224} \mathrm{Ra}$.

Back to Table

15. The diagram shows an experiment set up to investigate the photoelectric effect.

The frequency of the incident radiation is varied and the current in the circuit is measured.

Which graph shows the relationship between the current I in the circuit and the frequency f of the incident radiation?

D

B
E

C

16. A photon of energy $6.40 \times 10^{-19} \mathrm{~J}$ is incident on a metal plate.

This causes photoemission to take place.
The work function of the metal is $4.20 \times 10^{-19} \mathrm{~J}$.
The maximum speed of the photoelectron is
A $1.19 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 9.60 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 6.95 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 6.79 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 4.91 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$.
17. Waves from two coherent sources, S_{1} and S_{2}, produce an interference pattern.

Maxima are detected at the positions shown.

The wavelength of the waves is 28 mm .
For the third minimum at P the path difference $\left(S_{2} P-S_{1} P\right)$ is
A 42 mm
B 56 mm
C $\quad 70 \mathrm{~mm}$
D 84 mm
E $\quad 98 \mathrm{~mm}$.

Back to Table

18. A ray of monochromatic light passes from air into water.

The wavelength of this light in air is 589 nm .
The speed of this light in water is
A $\quad 2.56 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 4.52 \times 10^{2} \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 2.26 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
D $3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 3.99 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.
19. When light passes through the outer layers of the Sun certain frequencies of light are absorbed by hydrogen atoms, producing dark lines in the spectrum.
The diagram represents some of the energy levels for a hydrogen atom.

The number of absorption lines in the spectrum caused by the transition of electrons between these energy levels is

A 4
B 6
C 9
D 10
E 20.

Back to Table

20. The output from an AC power supply is connected to an oscilloscope. The trace seen on the oscilloscope screen is shown.

The Y -gain setting on the oscilloscope is $1.0 \mathrm{~V} / \mathrm{div}$.
The rms voltage of the power supply is
A $\quad 2.1 \mathrm{~V}$
B 3.0 V
C 4.0 V
D 4.2 V
E 6.0 V .

Back to Table

21. The output from a signal generator is connected to an oscilloscope. The trace observed on the oscilloscope screen is as shown in the diagram.

The frequency of the signal from the signal generator is now doubled.
The amplitude of the signal is unchanged.
The Y-gain setting on the oscilloscope is unchanged.
The timebase setting on the oscilloscope is changed from $1.0 \mathrm{~ms} /$ division to $0.5 \mathrm{~ms} /$ division. Which of the following diagrams shows the trace that is now observed on the oscilloscope screen?
A

D

B

E

C

Back to Table

22. A student sets up a circuit and measures the voltage across and the current in a resistor.

The measurements and their uncertainties are

$$
\begin{aligned}
& \text { voltage }=(10.0 \pm 0.1) \mathrm{V} \\
& \text { current }=(0.50 \pm 0.01) \mathrm{A}
\end{aligned}
$$

The approximate absolute uncertainty in the calculated value of the resistance of the resistor is

A $\pm 0.11 \Omega$
B $\pm 0.2 \Omega$
C $\pm 0.4 \Omega$
D $\pm 1 \Omega$
$\mathrm{E} \quad \pm 2 \Omega$.
23. A circuit is set up as shown.

The power supply has negligible internal resistance.
The power dissipated in the 3.0Ω resistor is
A 3.0 W
B $\quad 6.0 \mathrm{~W}$
C $\quad 9.0 \mathrm{~W}$
D $\quad 12 \mathrm{~W}$
E $\quad 18 \mathrm{~W}$.
24. A student connects four identical light emitting diodes (LEDs) to a 2 V DC supply as shown.

Which of the LEDs P, Q, R, and S will light?
A Ponly
B Q only
C P and Q only
D Pand R only
E Q and S only.
25. A student makes the following statements about uncertainties.

I All measurements of physical quantities are liable to uncertainties.
II Random uncertainties occur when a measurement is repeated and slight variations occur.
III Systematic uncertainties in a quantity occur when measurements are either all smaller or all larger than the true value of the quantity.

Which of these statements is/are correct?
A I only
B I and II only
C I and III only
D II and III only
E I, II and III

Question	Answer	Mark
1.	E	1
2.	B	1
3.	D	1
4.	A	1
5.	B	1
6.	E	1
7.	B	1
8.	C	1
9.	B	1
10.	E	1
11.	D	1
12.	A	1
13.	A	1
14.	C	1
15.	E	1
16.	C	1
17.	C	1
18.	C	1
19.	D	1
20.	A	1
21.	B	1
22.	C	1
23.	D	1
24.	B	1
25.	E	1

[END OF MARKING INSTRUCTIONS]

Total marks - 130
Attempt ALL questions

1. A student carries out an experiment with a tennis ball and a motion sensor connected to a laptop.

The ball is released from rest below the sensor.
The graph shows how the vertical velocity v of the ball varies with time t, from the moment the ball is released until it rebounds to its new maximum height.

1. (continued)
(a) Using information from the graph
(i) show that the initial acceleration of the ball is $-9.8 \mathrm{~m} \mathrm{~s}^{-2}$

Space for working and answer
(ii) determine the height from which the ball is released.

Space for working and answer

1. (continued)
(b) The mass of the ball is 57.0 g .
(i) Determine the magnitude of the change in momentum of the ball during the bounce.

Space for working and answer
(ii) Determine the magnitude of the average force exerted by the ball on the ground during the bounce.

Space for working and answer

1. (continued)
(c) Complete the sketch graph of acceleration a against time t for the ball, between 0 s and 1.18 s after it is released.

Numerical values are not required on the acceleration axis.
(An additional graph, if required, can be found on page 44)

[Turn over

Back to Table

Question			Expected response	Max mark	Additional guidance
1.	(a)	(i)	$\begin{align*} & v=u+a t \tag{1}\\ & -4.9=0+a \times 0.50 \tag{1}\\ & a=-9.8 \mathrm{~m} \mathrm{~s}^{-2} \end{align*}$	2	SHOW QUESTION. Do not accept: $a=\frac{v}{t}$ Must show substitution for u and must use the sign convention given in the question. Alternative method: $\begin{aligned} a & =\frac{\Delta v}{t} \\ & =\frac{-4.9}{0.50} \\ & =-9.8 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$ Accept methods starting with $a=\text { gradient }$ OR $a=\frac{\Delta v}{\Delta t}$ OR $a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Back to Table

Question		Expected response	Max mark	Additional guidance
	(ii)	$\begin{align*} s & =u t+\frac{1}{2} a t^{2} \tag{1}\\ & =0 \times 0.50+\frac{1}{2} \times(-) 9.8 \times(0.50)^{2} \tag{1}\\ & =(-) 1 \cdot 2 \mathrm{~m} \tag{1} \end{align*}$	3	Accept: 1,1•23,1•225 Sign convention must be consistent for all methods. Alternative methods: v and a must have same sign $\begin{aligned} & v^{2}=u^{2}+2 a s \\ & ((-) 4 \cdot 9)^{2}=0^{2}+2 \times(-) 9 \cdot 8 \times s \\ & s=(-) 1 \cdot 2 \mathrm{~m} \end{aligned}$ $\begin{aligned} & s=\frac{1}{2}(u+v) t \\ & s=\frac{1}{2}(0+(-) 4 \cdot 90) \times 0 \cdot 50 \\ & s=(-) 1 \cdot 2 \mathrm{~m} \end{aligned}$ $s=$ area under the graph $\begin{aligned} & s=\frac{1}{2} \times 0.5 \times(-) 4.9 \\ & s=(-) 1.2 \mathrm{~m} \end{aligned}$
(b)	(i)	$\begin{align*} \Delta m v & =m v-m u \tag{1}\\ & =(0.0570 \times 4 \cdot 0)-(0 \times 0570 \times-4 \cdot 9) \tag{1}\\ & =0.51 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Accept: 0.5, 0.507, 0.5073 Accept: $\begin{aligned} & \Delta p=m \Delta v \\ & F t=m v-m u \end{aligned}$ Do not accept: $p=m v-m u-0 \text { marks }$ Sign convention must be consistent within this part of the question. v and u must have opposite signs. $\begin{align*} & p=m v \tag{1}\\ & \text { all substitutions including } \\ & \text { subtraction } \tag{1}\\ & \text { final answer } \end{align*}$

Back to Table

Question			Expected response	Max mark	Additional guidance
1.	(b)	(ii)	$\begin{align*} & F t=m v-m u \tag{1}\\ & F \times 0.27=0.51 \tag{1}\\ & F=1.9 \mathrm{~N} \tag{1} \end{align*}$	3	Or consistent with (b)(i) Accept: 2, 1•89, 1•889 Alternative method: Sign convention must be consistent for this method. v and u must have opposite signs. $\begin{aligned} & v=u+a t \\ & 4 \cdot 0=-4 \cdot 9+a \times 0.27 \\ & \left(a=32.96296296\left(\mathrm{~m} \mathrm{~s}^{-2}\right)\right) \\ & F=m a \\ & F=0.0570 \times 32.96296296 \\ & F=1.9 \mathrm{~N} \end{aligned}$ For this method accept 2, 1•88, 1.879 Both relationships Final answer
		(c)	Same constant negative acceleration between 0 and 0.50 s and between 0.77 and 1.18 s Constant positive acceleration between the two negative accelerations. Positive acceleration must be (clearly) greater than the negative acceleration	2 0.77	Accept solid vertical lines If values are included on the acceleration axis, they must be correct ($-9 \cdot 8$ and 33). If no positive acceleration is shown, maximum (1 mark) for a constant negative acceleration between 0 and $1 \cdot 18 \mathrm{~s}$.

2. A student abseils down the outside of a building using a rope.

The mass of the student is 55 kg .
The rope, of negligible mass, is attached to a fixed point X at the top of the building.
The rope makes an angle of 15° to the building.
(a) Calculate the weight W of the student.

Space for working and answer
2. (continued)
(b) Determine the tension T in the rope.

Space for working and answer
(c) As the student abseils down the building the angle the rope makes with the building decreases.
State whether the tension in the rope increases, decreases or stays the same.
Justify your answer.

Back to Table

Question		Expected response	Max mark	Additional guidance
2.	(a)	$\begin{align*} W & =m \tag{1}\\ & =55 \times 9.8 \tag{1}\\ & =540 \mathrm{~N} \tag{1} \end{align*}$	3	Accept: 500, 539, 539•0 Accept: $F=m g$ Do not accept: $F=m a-0$ marks
	(b)	$\begin{align*} & T_{v}=T \cos \theta \tag{1}\\ & 540=T \cos 15 \tag{1}\\ & T=560 \mathrm{~N} \tag{1} \end{align*}$	3	Or consistent with (a) Accept: 600, 559, 559•0 Accept: $600,558,558 \cdot 0$ for this value of W Accept: $W=T \cos \theta$ Ignore any indication of direction given.
	(c)	(Tension) decreases (As the angle decreases) the cosine of the angle increases OR the horizontal (component of the) force decreases OR shown by calculation with smaller angle	2	Look for this statement first - if incorrect or missing then (0 marks).

3. A footballer tells teammates that a football can be kicked a much greater distance when the ball is initially travelling towards them, compared to kicking a stationary ball.

Use your knowledge of physics to comment on this statement.
4. A communications satellite orbits the Earth at a height of $36.0 \times 10^{6} \mathrm{~m}$ above the surface of the Earth.

The mass of the Earth is $6.0 \times 10^{24} \mathrm{~kg}$ and the radius of the Earth is $6.4 \times 10^{6} \mathrm{~m}$.
(a) Determine the distance between the centre of the Earth and the satellite. Space for working and answer
(b) The gravitational force of attraction between the Earth and the satellite is 57 N .

Calculate the mass of the satellite.
Space for working and answer
4. (continued)
(c) Determine the value of the Earth's gravitational field strength g at the satellite.
Space for working and answer
(d) A second satellite has a quarter of the mass of the first satellite.

The distance from the centre of the Earth to the second satellite is half the distance from the centre of the Earth to the first satellite.
State how the gravitational force of attraction between the second satellite and the Earth compares to the gravitational force of attraction between the first satellite and the Earth.
Justify your answer.

Back to Table

Question		Expected response	Max mark	Additional guidance
4.	(a)	$\begin{aligned} & \left(\text { distance }=6.4 \times 10^{6}+36.0 \times 10^{6}\right) \\ & =42 \cdot 4 \times 10^{6} \mathrm{~m} \end{aligned}$	1	
	(b)	$\begin{align*} & F=G \frac{m_{1} m_{2}}{r^{2}} \tag{1}\\ & 57=6 \cdot 67 \times 10^{-11} \times \frac{6 \cdot 0 \times 10^{24} \times m_{2}}{\left(42.4 \times 10^{6}\right)^{2}} \tag{1}\\ & m_{2}=260 \mathrm{~kg} \tag{1} \end{align*}$	3	Or consistent with (a) Accept: 300, 256, 256•1
	(c)	$\begin{align*} W & =m g \tag{1}\\ 57 & =260 \times g \tag{1}\\ g & =0.22 \mathrm{Nkg}^{-1} \tag{1} \end{align*}$	3	Or consistent with (b) Accept: $0 \cdot 2,0 \cdot 219,0 \cdot 2192$ Accept: $F=m g$ Do not accept: $F=m a$ - (0 marks) Alternative method: $\begin{align*} & g=G \frac{M}{r^{2}} \tag{1}\\ & g=6 \cdot 67 \times 10^{-11} \times \frac{6.0 \times 10^{24}}{\left(42.4 \times 10^{6}\right)^{2}} \tag{1}\\ & g \quad=0.22 \mathrm{Nkg}^{-1} \tag{1} \end{align*}$
	(d)	Force is the same $1 / 4$ the mass has an effect of quartering the force $1 / 2$ the orbital height has an effect of quadrupling the force	3	Look for this statement first - if incorrect or missing then 0 marks. Can justify by calculation Correct substitution of $\frac{1}{2} r$ and $\frac{1}{4} m$ or consistent with (a) and (b) Correct final answer

5. (a) A person is standing at the side of a road. A car travels along the road towards the person, at a constant speed of $12 \mathrm{~m} \mathrm{~s}^{-1}$. The car emits a sound of frequency 510 Hz .

The person observes that the frequency of the sound heard changes as the car passes.
(i) State the name given to this effect.
(ii) Calculate the frequency of the sound heard by the person as the car approaches.

The speed of sound in air is $340 \mathrm{~m} \mathrm{~s}^{-1}$.
Space for working and answer
5. (continued)
(b) This same effect is used to determine the speed of red blood cells through blood vessels.

Ultrasound waves are transmitted by a probe. The frequency of the ultrasound waves changes as they reflect from the blood cells. The probe detects the reflected waves.

The velocity of the red blood cells can be determined using the following relationship

$$
\Delta f=\frac{2 f v_{r b c} \cos \theta}{v}
$$

where
Δf is the change in frequency f is the transmitted frequency
$v_{r b c}$ is the velocity of the red blood cells
v is the velocity of the ultrasound
θ is the angle between the direction of the waves and the direction of the blood flow.

The frequency of the ultrasound transmitted by the probe is 3.70 MHz .
The velocity of the ultrasound is $1540 \mathrm{~m} \mathrm{~s}^{-1}$.
During one test, the angle between the direction of the waves and blood flow is $60 \cdot 0^{\circ}$. The change in frequency of the ultrasound is 286 Hz .
Calculate the velocity of the red blood cells during this test.
Space for working and answer

Back to Table

6. Stars emit radiation with a range of wavelengths. The peak wavelength of the radiation depends on the surface temperature of the star.
(a) The graph shows how the energy emitted per second per unit area varies with the wavelength λ of the radiation for a star with a surface temperature of 5000 K .

A second star has a surface temperature of 6000 K .
On the graph above, add a line to show how the energy emitted per second per unit area varies with the wavelength λ of the radiation for the second star.
(An additional graph, if required, can be found on page 44)
6. (continued)
(b) The table gives the surface temperature T, in kelvin, of four different stars and the peak wavelength $\lambda_{\text {peak }}$ of radiation emitted from each star.

$\boldsymbol{T}(\mathrm{K})$	$\lambda_{\text {peak }}(\mathrm{m})$
7700	3.76×10^{-7}
8500	3.42×10^{-7}
9600	3.01×10^{-7}
12000	2.42×10^{-7}

Use all the data in the table to show that the relationship between the surface temperature T of a star and the peak wavelength $\lambda_{\text {peak }}$ radiated from the star is

$$
T=\frac{2.9 \times 10^{-3}}{\lambda_{\text {peak }}}
$$

Space for working and answer

Page 36
Back to Table

Back to Table

Question		Expected response	Max mark	Additional guidance
6.	(a)		2	Peak wavelength less Line added should always be above original line
	(b)	$\begin{align*} & 7700 \times 3.76 \times 10^{-7}=2 \cdot 9 \times 10^{-3} \\ & 8500 \times 3.42 \times 10^{-7}=2 \cdot 9 \times 10^{-3} \tag{1}\\ & 9600 \times 3.01 \times 10^{-7}=2 \cdot 9 \times 10^{-3} \\ & 12000 \times 2 \cdot 42 \times 10^{-7}=2 \cdot 9 \times 10^{-3} \end{align*}$ therefore $\begin{equation*} T \times \lambda_{\text {peak }}=2 \cdot 9 \times 10^{-3} \tag{1} \end{equation*}$	3	All four calculations correct Three correct calculations $<$ Three correct calculations $\begin{align*} & 7700 \times 3 \cdot 76 \times 0^{-7}=2 \cdot 895 \times 10^{-3} \\ & 8500 \times 3 \cdot 42 \times 10^{-7}=2 \cdot 907 \times 10^{-3} \tag{2}\\ & 9600 \times 3 \cdot 01 \times 10^{-7}=2 \cdot 890 \times 10^{-3} \\ & 12000 \times 2 \cdot 42 \times 10^{-7}=2 \cdot 904 \times 10^{-3} \end{align*}$ therefore $\begin{equation*} T \times \lambda_{\text {peak }}=2.9 \times 10^{-3} \tag{1} \end{equation*}$ This 'conclusion' mark is only available if consistent with the calculations shown. For 'finding the constant' method, accept restatement of relationship for final mark. Alternative methods: Can calculate the temperatures or wavelengths using the relationship. Final mark is given for a statement that the calculated temperatures or wavelengths match values in the table. Graphical method: Graph drawn correctly Gradient calculated restatement of relationship

7. Scientists have recently discovered a type of particle called a pentaquark. Pentaquarks are very short lived and contain five quarks.

A lambda $b\left(\Lambda_{b}\right)$ pentaquark contains the following quarks: 2 up, 1 down, 1 charm, and 1 anticharm quark.
(a) Quarks and leptons are fundamental particles.
(i) Explain what is meant by the term fundamental particle.
(ii) State the name given to the group of matter particles that contains quarks and leptons.
(b) The table contains information about the charge on the quarks that make up the Λ_{b} pentaquark.

Type of quark	Charge
up	$+\frac{2}{3} e$
down	$-\frac{1}{3} e$
charm	$+\frac{2}{3} e$
anticharm	$-\frac{2}{3} e$

Determine the total charge on the Λ_{b} pentaquark.
Space for working and answer
7. (continued)
(c) One theory to explain the structure of the Λ_{b} pentaquark suggests that three of the quarks group together and one quark and the antiquark group together within the pentaquark.

(i) State the type of particle that is made of a quark-antiquark pair.
(ii) The mean lifetime of another quark-antiquark pair is $8.0 \times 10^{-21} \mathrm{~s}$ in its own frame of reference.

During an experiment the quark-antiquark pair is travelling with a velocity of 0.91 c relative to a stationary observer.
Calculate the mean lifetime of this quark-antiquark pair relative to the stationary observer.

Space for working and answer
7. (continued)
(d) The Λ_{b} pentaquark has a mass-energy equivalence of 4450 MeV . One eV is equal to $1.60 \times 10^{-19} \mathrm{~J}$.
(i) Determine the energy, in joules, of the Λ_{b} pentaquark.

Space for working and answer

Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
7.	(a)	(i)	Fundamental particles are not composed of other particles.	1	Accept: Fundamental particles cannot be 'broken down' into other/smaller particles. Fundamental particles cannot be 'broken down' any further.
		(ii)	Fermions	1	
	(b)		$\begin{equation*} 2 / 3 e+2 / 3 e-1 / 3 e+2 / 3 e-2 / 3 e \tag{1} \end{equation*}$ $\begin{equation*} =1 e \text { or }+1 e \text { or } e \tag{1} \end{equation*}$	2	Accept: $2 / 3+2 / 3-1 / 3+2 / 3-2 / 3$ OR $\begin{align*} & 2(2 / 3 e)-1 / 3 e+2 / 3 e-2 / 3 e \tag{1}\\ & =1 e \text { or }+1 \mathrm{e} \text { or } \mathrm{e} \tag{1} \end{align*}$
	(c)	(i)	Meson	1	
		(ii)	$\begin{align*} & t^{\prime}=\frac{t}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \tag{1}\\ & t^{\prime}=\frac{8.0 \times 10^{-21}}{\sqrt{1-\left(\frac{0.91 c}{c}\right)^{2}}} \tag{1}\\ & t^{\prime}=1 \cdot 9 \times 10^{-20} \mathrm{~s} \tag{1} \end{align*}$	3	Accept: 2,1•93, 1-930
	(d)	(i)	$\begin{aligned} & \left(4450 \times 10^{6} \times 1 \cdot 60 \times 10^{-19}\right) \\ & =7 \cdot 12 \times 10^{-10}(\mathrm{~J}) \end{aligned}$	1	A unit is not required but, if a unit is given, it must be correct.
		(ii)	$\begin{align*} & E=m c^{2} \tag{1}\\ & 7 \cdot 12 \times 10^{-10}=m \times\left(3.00 \times 10^{8}\right)^{2} \tag{1}\\ & m=7 \cdot 91 \times 10^{-27} \mathrm{~kg} \tag{1} \end{align*}$	3	Or consistent with (d) (i) Accept: 7•9, 7•911, 7•9111

8. The Sun emits energy at an average rate of $4 \cdot 1 \times 10^{26} \mathrm{~J} \mathrm{~s}^{-1}$. This energy is produced by nuclear reactions taking place inside the Sun.
The following statement shows one reaction that takes place inside the Sun.

$$
{ }_{1}^{2} \mathrm{H}+{ }_{1}^{2} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} \mathrm{n}
$$

(a) State the name given to this type of nuclear reaction.
(b) The mass of the particles involved in this reaction are shown in the table.

Particle	Mass (kg)
${ }_{1}^{2} \mathrm{H}$	3.3436×10^{-27}
${ }_{2}^{3} \mathrm{He}$	5.0082×10^{-27}
${ }_{0}^{1} \mathrm{n}$	1.6749×10^{-27}

Determine the energy released in this reaction.
Space for working and answer
8. (continued)
(c) Determine the number of these reactions that would be required per second to produce the Sun's average energy output.
Space for working and answer

Back to Table

Question		Expected response	Max mark	Additional guidance
8.	(a)	(Nuclear) Fusion	1	
	(b)	Mass before $=2 \times 3.3436 \times 10^{-27}$ $\begin{align*} & =6 \cdot 6872 \times 10^{-27} \\ \text { Mass after } & =5 \cdot 0082 \times 10^{-27}+1 \cdot 6749 \times 10^{-27} \\ & =6 \cdot 6831 \times 10^{-27} \\ \text { Mass lost } & =4 \cdot 1 \times 10^{-30}(\mathrm{~kg}) \tag{1} \end{align*}$ $\begin{align*} & E=m c^{2} \tag{1}\\ & E=4 \cdot 1 \times 10^{-30} \times\left(3 \cdot 00 \times 10^{8}\right)^{2} \tag{1}\\ & E=3 \cdot 69 \times 10^{-13} \mathrm{~J} \tag{1} \end{align*}$	4	Accept: 3•7, 3•690, 3•6900 Check for correct substitutions of values in calculation of mass "lost". If values are incorrect, maximum (1 mark) for relationship. $E=m c^{2}$ anywhere (1 mark) If mass before and after not used to full 5 significant figures from table, then maximum (1 mark) for relationship. Ignore inappropriate reference to mass defect. Arithmetic mistake can be carried forward through the response. Truncation error in mass before and/or mass after- maximum (1 mark) for relationship.
	(c)	$\begin{align*} & \frac{4 \cdot 1 \times 10^{26}}{3 \cdot 69 \times 10^{-13}} \tag{1}\\ & =1 \cdot 1 \times 10^{39} \tag{1} \end{align*}$	2	Or consistent with (b) Accept: 1,1•11,1•111

9. A laser emits light when electrons are stimulated to fall from a high energy level to a lower energy level.
The diagram shows some of the energy levels involved.
In one particular laser, a photon is produced by the electron transition from E_{5} to E_{3} as shown.

$$
\mathrm{E}_{2}-
$$

(a) (i) Determine the wavelength of the photon emitted.

9. (a) (continued)
(ii) The laser beam is shone onto a screen. The beam produces a spot of diameter $8.00 \times 10^{-4} \mathrm{~m}$.

The irradiance of the spot of light on the screen is $9950 \mathrm{Wm}^{-2}$.
Determine the power of the laser beam.
Space for working and answer
(b) A student investigates how irradiance I varies with distance d from a point source of light, using the apparatus shown.

Describe how this apparatus could be used to verify the inverse square law for a point source of light.

Back to Table

Question			Expected response	Max mark	Additional guidance
9.	(a)	(i)	$\begin{align*} & E_{2}-E_{1}=h f \\ & -2 \cdot 976 \times 10^{-18}-\left(-3 \cdot 290 \times 10^{-18}\right) \tag{1}\\ & =6 \cdot 63 \times 10^{-34} \times f \\ & \left(f=4 \cdot 736048265 \times 10^{14} \mathrm{~Hz}\right) \\ & v=f \lambda(1) \end{align*}$ (for both relationships anywhere) $\begin{align*} & 3.00 \times 10^{8}=4 \cdot 736048265 \times 10^{14} \times \lambda \tag{1}\\ & \lambda=6 \cdot 33 \times 10^{-7} \mathrm{~m} \tag{1} \end{align*}$	4	Accept: 6•3, 6•334, 6•3344 Accept: (Δ) $E=h f$ with $v=f \lambda$ OR $E_{5}-E_{3}=h f \text { with } v=f \lambda$ for relationship mark anywhere Note: $\Delta E=3 \cdot 14 \times 10^{-19}(\mathrm{~J})$ Accept: $\begin{gathered} 3 \cdot 290 \times 10^{-18}-2 \cdot 976 \times 10^{-18} \\ =6 \cdot 63 \times 10^{-34} \times f \end{gathered}$ for energy substitution mark If $2.976 \times 10^{-18}-3 \cdot 290 \times 10^{-18}$ is shown for ΔE, maximum (1 mark) for both relationships. Alternative method: $E_{2}-E_{1}=\frac{h c}{\lambda}$ OR $\begin{equation*} (\Delta) E=\frac{h c}{\lambda} \tag{1} \end{equation*}$ Combined relationship Substitution for h and ΔE Substitution for c Final answer
		(ii)	$\begin{align*} & A=\pi r^{2} \\ & =\pi \times\left(4 \cdot 00 \times 10^{-4}\right)^{2} \tag{1}\\ & I=\frac{P}{A} \tag{1}\\ & 9950=\frac{P}{\pi \times\left(4 \cdot 00 \times 10^{-4}\right)^{2}} \tag{1}\\ & P=5 \cdot 00 \times 10^{-3} \mathrm{~W} \tag{1} \end{align*}$	4	Accept a range of 1 to 5 significant figures for this question. The use of 3.14 for π is acceptable. $I=\frac{P}{A} \text { anywhere }$ If no attempt to calculate area, maximum (1 mark) for relationship.

Back to Table

Question		Expected response	Max mark	Additional guidance	
9.	(b)	Obtain values of irradiance for different distances (1)	3	Look for this statement or equivalent first - if incorrect or missing then (0 marks).	
Plot graph of I against $1 / d^{2}$ (1) Graph of I against $1 / d^{2}$ is a straight		Alternative method: line through the origin (then this verifies the inverse square law of light)	(1)		Obtain values of irradiance for different distances
Determine $I \times d^{2}$ Values of $I d^{2}$ are a constant (then this verifies the inverse square law of light)					

10. A student carries out an experiment to investigate the effect of a grating on beams of light from three different lasers.

not to scale
The three different lasers produce red, green and blue light respectively.
Each laser beam is directed in turn towards the grating.
The grating has a slit separation of $3.3 \times 10^{-6} \mathrm{~m}$.
(a) State which of these three colours of laser light would produce the smallest angle θ between the central maximum and the first order maximum.
Justify your answer.
11. (continued)
(b) The angle θ between the central maximum and the first order maximum for light from one of the lasers is 8.9°.
(i) Calculate the wavelength of this light.

Space for working and answer
(ii) Determine the colour of the light from this laser.
(iii) Another student suggests that a more accurate value for the wavelength of this laser light can be found if a grating with a slit separation of $5.0 \times 10^{-6} \mathrm{~m}$ is used.
Explain why this suggestion is incorrect.

Back to Table

Question			Expected response	Max mark	Additional guidance
10.	(a)		Blue (light) Shortest wavelength of light Path difference is smaller/equals the wavelength so the spots are closer together OR $\sin \theta$ is proportional to λ	3	Look for this statement first - if incorrect or missing then (0 marks). Accept: $d \sin \theta=m \lambda$ and shortest λ gives smallest $\sin \theta$ (which gives smallest θ) Alternative methods: Can be shown by calculation but it must be clear the candidate has used appropriate wavelengths.
	(b)	(i)	$\begin{align*} m \lambda & =d \sin \theta \tag{1}\\ (1 \times) \lambda & =3 \cdot 3 \times 10^{-6} \times \sin 8.9 \tag{1}\\ \lambda & =5 \cdot 1 \times 10^{-7} \mathrm{~m}(510 \mathrm{~nm}) \tag{1} \end{align*}$	3	Accept: $5,5 \cdot 11,5 \cdot 105$ Accept: $\lambda=d \sin \theta \text { in this case }$
		(ii)	Green	1	Or consistent with (b)(i) but must be red, green or blue. If λ in (b)(i) lies outside of range of red, green or blue this mark is not accessible.

Back to Table

Question			Expected response	Max mark	Additional guidance
10.	(b)	(iii)	($\sin \theta=\frac{m \lambda}{d}$ so if d is greater then) angle θ will be smaller Smaller angle more difficult to measure accurately/greater percentage uncertainty.	2	Accept: maxima are closer together Smaller distance between maxima more difficult to measure accurately/greater percentage uncertainty.(1)

11. Diamonds sparkle because light that enters the diamond is reflected back to an observer.

(a) A ray of monochromatic light is incident on a diamond at an angle of $49 \cdot 0^{\circ}$. The refractive index of diamond for this light is $2 \cdot 42$.

Calculate the angle of refraction θ.
Space for working and answer
(b) Calculate the critical angle of the diamond for this light.
11. (continued)
(c) Moissanite is a transparent material with a greater refractive index than diamond. A sample of moissanite is made into the same shape as the diamond.
State whether the sample of moissanite sparkles more or less than the diamond.
You must justify your answer.

Back to Table

Question	Expected response	Max mark	Additional guidance

12. (a) A student sets up the circuit shown.

When switch S is open the reading on the voltmeter is 1.5 V .
Switch S is now closed.
The reading on the voltmeter is now 1.3 V and the reading on the ammeter is 0.88 A .
(i) State the EMF E of the cell.
(ii) Calculate the internal resistance r of the cell.

Space for working and answer
(iii) Explain why the reading on the voltmeter decreases when the switch is closed.
12. (continued)
(b) A battery of EMF 9.0 V and internal resistance 1.2Ω is connected in series with a lamp. The lamp has a resistance of $2 \cdot 4 \Omega$.

(i) Determine the current in the lamp.

Space for working and answer
(ii) Calculate the power dissipated in the lamp.

Back to Table

Question			Expected response	Max mark	Additional guidance
12.	(a)	(i)	$1 \cdot 5 \mathrm{~V}$	1	
		(ii)	$\begin{align*} & E=V+I r \tag{1}\\ & 1 \cdot 5=1 \cdot 3+0 \cdot 88 r \tag{1}\\ & r=0 \cdot 23 \Omega \tag{1} \end{align*}$	3	Accept: 0.2, 0.227, 0.2273 Alternative methods: $\begin{align*} & V=I R \tag{1}\\ & 0 \cdot 2=0.88 \times R \tag{1}\\ & R=0.23 \Omega \tag{1} \end{align*}$ lost volts $=I r$ $\begin{aligned} & 0 \cdot 2=0 \cdot 88 \times R \\ & R=0 \cdot 23 \Omega \end{aligned}$
		(iii)	(When the switch is closed) there is a current (in the circuit). Voltage (is dropped) across the internal resistance.	2	Independent marks Do not accept 'current increases’ on its own. 'Lost volts' is not sufficient on its own
	(b)	(i)	$\begin{equation*} E=V+I r \text { and } V=I R \tag{1} \end{equation*}$ OR $\begin{align*} & E=I(R+r) \tag{1}\\ & 9 \cdot 0=I(2 \cdot 4+1 \cdot 2) \tag{1}\\ & I=2 \cdot 5 \mathrm{~A} \tag{1} \end{align*}$	3	Accept: 3, 2•50, 2.500 Both relationships Both substitutions (1) Alternative method: $\begin{align*} & V=I R \tag{1}\\ & 9.0=I \times 3.6 \\ & \mathrm{I}=2.5 \mathrm{~A} \end{align*}$ For other alternative methods: All relationships All substitutions Correct final answer
		(ii)	$\begin{align*} & P=I^{2} R \tag{1}\\ & P=2 \cdot 5^{2} \times 2 \cdot 4 \tag{1}\\ & P=15 \mathrm{~W} \tag{1} \end{align*}$	3	Or consistent with (b)(i) Accept 20,15•0,15•00 For alternative methods: All relationships All substitutions Correct final answer

Back to Table

13. A student investigates the charging of a capacitor.

The student sets up the circuit as shown using a $47 \mu \mathrm{~F}$ capacitor.

The capacitor is initially uncharged. The switch S is now closed. A laptop connected to an interface displays a graph of current against time as the capacitor charges.
(a) The variable voltage supply is set at $6 \cdot 0 \mathrm{~V}$.

Calculate the maximum charge stored by the capacitor.
Space for working and answer

Back to Table

13. (continued)
(b) The graph shows how the current I varies with time t as the capacitor charges.

Switch S is opened, and the capacitor is discharged.
The resistor is now replaced with one that has a greater resistance.
Switch S is again closed and the capacitor charges.
Add a line to the graph above to show how the current now varies with time as the capacitor charges.
(An additional graph, if required, can be found on page 45.)
(c) Suggest an alteration the student could make to this circuit to increase the maximum energy stored by the $47 \mu \mathrm{~F}$ capacitor.

Back to Table

Question		Expected response	Max mark	Additional guidance
13.	(a)	$\begin{align*} & C=\frac{Q}{V} \tag{1}\\ & 47 \times 10^{-6}=\frac{Q}{6 \times 0} \tag{1}\\ & Q=2 \cdot 8 \times 10^{-4} \mathrm{C} \tag{1} \end{align*}$	3	Accept: 3, 2•82, 2•820
	(b)		2	Independent marks Line crossing x-axis - maximum (1) Line crossing y-axis - maximum (1) Line must be a curve to award the second mark. Line must tend towards the time axis to gain the second mark. Do not accept: increasing curve - 0 marks straight line - 0 marks
	(c)	Increase the supply voltage	1	Must clearly indicate the supply voltage is increased/greater. Accept: 'increase the voltage supplied to the circuit'. 'increase the voltage supplied to the capacitor'. Do not accept: 'increase the voltage across the capacitor' on its own. Do not accept any implication of power supply being replaced by another power supply.

13. (continued)
(d) The use of analogies from everyday life can help improve the understanding of physics concepts.
Vehicles using a car park may be taken as an analogy for the charging of a capacitor.

Use your knowledge of physics to comment on this analogy.
14. Solids can be categorised as conductors, insulators or semiconductors depending on their ability to conduct electricity. Their electrical conductivity can be explained using band theory.

The diagrams show the valence and conduction bands of three solids X, Y and Z .

One represents a conductor, one represents an insulator and one represents a semiconductor.
energy of electrons

solid X

solid Y

solid Z
(a) Complete the table to show which solid represents a conductor, an insulator and a semiconductor.

Solid	Category
X	
Y	
Z	

Back to Table

14. (continued)
(b) Using band theory, explain why conduction can take place in a semiconductor at room temperature.
(c) Silicon can be doped with arsenic to produce an n-type semiconductor. State the effect that doping has on the conductivity of silicon.
(d) Resistivity is a measure of a material's property to oppose the flow of charge.
The resistivity of silicon is $2 \cdot 3 \times 10^{3} \Omega \mathrm{~m}$.
The resistivity of copper is $1.7 \times 10^{-8} \Omega \mathrm{~m}$.
Compare the resistivity of silicon to the resistivity of copper in terms of orders of magnitude.

Space for working and answer

Back to Table

| Question | | Expected response | | Max
 mark | Additional guidance |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- |

15. A 1.00 m long wooden rod has a series of small holes drilled at 10 mm intervals along its length. The rod is hung on a horizontal pin passing through a hole 50 mm from one end.

The rod is then raised through a small angle and released.
The period T is the time for the rod to travel from A to B and back to A .
(a) Describe a method to obtain an accurate value for the period T using only a stopwatch.

Back to Table

15. (continued)
(b) The rod is hung from different holes in turn, and the distance h from the pin to the midpoint of the rod is recorded.
T is determined for each value of h. The results are shown in the table.

$\boldsymbol{h (m)}$	$\boldsymbol{T}(\mathrm{s})$
0.45	1.60
0.40	1.56
0.35	1.54
0.30	1.53
0.25	1.53
0.22	1.55
0.20	1.58

(i) Using the square-ruled paper on page 41, draw a graph of T against h.
(ii) Using your graph, state the two values of h that produce a period of 1.57 s .
(iii) (A) Using your graph, estimate the minimum period T.
(B) Suggest an improvement to the experimental procedure that would allow a more precise value for the minimum period T to be determined.

15. (continued)
(c) The quantities T and h are related by the relationship

$$
T^{2} h=\frac{4 \pi^{2} h^{2}}{g}+C
$$

where g is the gravitational field strength and C is a constant.
Use data from the table on page 40 to calculate a value for C when h is 0.30 m .

A unit is not required.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
15.	(a)		Measure the total time over a number of swings Divide total time by number of swings	2	
	(b)	(i)		3	Appropriate labels and units Suitable scales Plotting and curve of best fit Allow for axes starting at zero or broken axes or at an appropriate value. Accuracy of plotting should be easily checkable with the scale chosen If the origin is shown the scale must either be continuous or the axis must be 'broken'. Otherwise maximum (2 marks). Do not penalise if the candidate plots h against T.
		(ii)	0.21 and 0.42 m	1	must be consistent with candidate's graph
		(iii) (A)	1.53 s	1	must be consistent with candidate's graph
		(B)	Use smaller increments around the 'turning point'. OR Take more measurements about the 'turning point'. OR Take more measurements over the whole range.	1	Accept: More readings around/close to turning point or smaller 'steps' in h. Do not accept: 'Repeat experiment' on its own.
	(c)		$\begin{align*} & T^{2} h=\frac{4 \pi^{2} h^{2}}{g}+C \\ & 1.53^{2} \times 0 \times 30=\frac{4 \times \pi^{2} \times 0 \cdot 30^{2}}{9.8}+C \tag{1}\\ & C=0.34 \tag{1} \end{align*}$	2	Accept: $0 \cdot 3,0 \cdot 340,0.3397$ If candidate uses $3 \cdot 14$ for π, accept $0 \cdot 3401$. Ignore any unit given.

[END OF MARKING INSTRUCTIONS]

Duration - 45 minutes

Total marks - 25
Attempt ALL questions.
You may use a calculator.
Instructions for the completion of Paper 1 are given on page 02 of your answer booklet X857/76/02.

Record your answers on the answer grid on page 03 of your answer booklet.
Reference may be made to the data sheet on page 02 of this question paper and to the relationships sheet X857/76/22.

Space for rough work is provided at the end of this booklet.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Back to Table

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Magnitude of the charge on an electron Universal Constant of Gravitation Gravitational acceleration on Earth Hubble's constant	e	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	$1 \cdot 33$
Crown glass	1.50	Air	1.00

SPECTRAL LINES

PROPERTIES OF SELECTED MATERIALS

Substance	Density $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$	Melting point (K)	Boiling point (K)
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	$1 \cdot 29$	\ldots.	\ldots.
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Back to Table

Total marks - 25

Attempt ALL questions

1. A specially adapted ball has an electronic timer, which starts to time when the ball is released and stops timing when the ball strikes a surface.

The ball is dropped from rest through a height h onto a hard surface.
The time recorded on the ball is 0.40 s .
The effects of air resistance can be ignored.
The height h is
A $\quad 0.20 \mathrm{~m}$
B $\quad 0.78 \mathrm{~m}$
C 1.56 m
D 1.96 m
E 3.92 m .

Back to Table

2. The velocity-time ($v-t$) graph for an object travelling in a straight line is shown below.

Which of the following is the corresponding acceleration-time ($a-t$) graph?
A

D

B

E

C

Back to Table

3. The velocity-time ($v-t$) graph for an object travelling along a straight line is shown.

Which row in the table shows the acceleration of the object during the 8.0 s and the displacement of the object at 8.0 s ?

	Acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$	Displacement (m)
A	-0.63	100
B	-0.63	140
C	-1.9	100
D	-1.9	120
E	-3.1	140

4. A pulling force of 500 N is applied to a 60 kg block on a slope as shown.

The maximum acceleration of the block is
A $\quad 2.0 \mathrm{~m} \mathrm{~s}^{-2}$
B $\quad 5.4 \mathrm{~m} \mathrm{~s}^{-2}$
C $\quad 6.3 \mathrm{~m} \mathrm{~s}^{-2}$
D $\quad 7.5 \mathrm{~m} \mathrm{~s}^{-2}$
E $\quad 8.3 \mathrm{~m} \mathrm{~s}^{-2}$.

Back to Table

5. Two objects, P and Q , of the same mass are dropped from the same height.

The graph shows how the vertical velocities of the two objects vary with time for the first 40 s of their fall.

A group of students make the following statements based on information from the graph.
I The terminal velocity of object P is $50 \mathrm{~m} \mathrm{~s}^{-1}$.
II Object Q reaches its terminal velocity at 10 s .
III At 40 s , both objects have fallen through the same distance.
Which of these statements is/are correct?
A I only
B I and II only
C I and III only
D II and III only
E I, II and III
6. The total mass of a motorcycle and rider is 250 kg .

During braking they are brought to rest from a speed of $16 \mathrm{~m} \mathrm{~s}^{-1}$ in a time of 10.0 s .
The maximum energy that could be converted to heat in the brakes is
A 2000 J
B $\quad 4000 \mathrm{~J}$
C 32000 J
D 40000 J
E 64000 J .

Back to Table

7. A carpenter is building a doorframe using a nail gun. The nail gun of mass $5 \cdot 0 \mathrm{~kg}$ fires a nail of mass 4.0 g .
The nail gun and nail are initially at rest.
The speed of the nail immediately after firing is $150 \mathrm{~m} \mathrm{~s}^{-1}$.
The recoil speed of the nail gun immediately after firing is
A $\quad 0.005 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 0.05 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 0.12 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 1.2 \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 120 \mathrm{~m} \mathrm{~s}^{-1}$.
8. The escape velocity v of an object is the minimum velocity required to allow the object to escape the gravitational field of a planet.
The following relationship is used to determine the escape velocity

$$
v=\sqrt{\frac{2 G M}{r}}
$$

where G is the Universal Constant of Gravitation
M is the mass of the planet
r is the radius of the planet.
A planet has a mass of $4.87 \times 10^{24} \mathrm{~kg}$ and a radius of $6.05 \times 10^{6} \mathrm{~m}$.
Based on this information, the escape velocity from this planet is
A $1.66 \times 10^{-28} \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 1.29 \times 10^{-14} \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 7.33 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 1.04 \times 10^{4} \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 3.97 \times 10^{9} \mathrm{~m} \mathrm{~s}^{-1}$.
9. A spacecraft is travelling at $6.0 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ relative to a star.

An observer on the spacecraft measures the speed of light emitted by the star to be
A $2.4 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
B $2.9 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
C $3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
D $3.1 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 3.6 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.

Back to Table

10. A spacecraft is travelling at a speed of 0.45 c relative to Earth.

An observer on Earth measures the time taken for the spacecraft to travel between two points to be 72 hours.
An observer on the spacecraft measures the time taken to travel between these two points to be

A 53 hours
B 64 hours
C 72 hours
D 81 hours
E 90 hours.
11. The redshift of light from a distant galaxy is $0 \cdot 125$.

The approximate distance to this distant galaxy is
A $\quad 3.75 \times 10^{7} \mathrm{~m}$
B $\quad 1.81 \times 10^{8} \mathrm{~m}$
C $5.43 \times 10^{16} \mathrm{~m}$
D $1.63 \times 10^{25} \mathrm{~m}$
E $\quad 1.30 \times 10^{26} \mathrm{~m}$.
12. A student makes the following statements about the Universe.

I Measurements of the velocities of galaxies and their distances from us lead to the theory of the origin of the expanding Universe.
II The mass of a galaxy can be estimated by the orbital speed of stars within it.
III Evidence supporting the existence of dark matter comes from the accelerating rate of expansion of the Universe.

Which of these statements is/are correct?
A I only
B I and II only
C I and III only
D II and III only
E I, II and III

Back to Table

13. Which of the following diagrams represents the electric field between a positive point charge and a negative point charge?

A

B

C

D

E

Back to Table

14. The group of matter particles known as fermions consists of

A baryons only
B quarks only
C leptons only
D quarks and leptons only
E baryons and mesons only.
15. A certain type of composite particle is made of two up quarks and a strange quark.

The charge on an up quark is $+\frac{2}{3} e$.
The charge on a strange quark is $-\frac{1}{3} e$.
Which of the following statements describes the nature and charge of this composite particle?

A The particle is a meson with a charge of $+1 e$.
$B \quad$ The particle is a meson with a charge of $-1 e$.
C The particle is a meson with no charge.
D The particle is a baryon with a charge of $-1 e$.
E The particle is a baryon with a charge of $+1 e$.
16. Two changes in a radioactive decay series are shown below.

$$
{ }_{90}^{231} \mathrm{Th} \xrightarrow{\beta}{ }_{\mathrm{Q}}^{\mathrm{P}} \mathrm{~Pa} \xrightarrow{\alpha}{ }_{\mathrm{S}}^{\mathrm{R}} \mathrm{Ac}
$$

A Thorium nucleus emits a beta particle and the product, a Protactinium nucleus, emits an alpha particle.
Which row in the table shows the numbers represented by $\mathrm{P}, \mathrm{Q}, \mathrm{R}$, and S ?

	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}
A	231	89	227	87
B	231	91	227	89
C	227	88	227	87
D	231	91	231	89
E	227	88	223	86

Back to Table

17. An experiment to demonstrate the photoelectric effect is set up as shown.

gold-leaf electroscope
Which row in the table shows the charge on the metal plate and the type of incident radiation most likely to cause photoelectric emission?

	Charge on metal plate	Type of incident radiation
A	negative	green light
B	positive	ultraviolet
C	negative	infrared
D	positive	red light
E	negative	ultraviolet

[Turn over

Back to Table

18. Two identical loudspeakers are connected to a signal generator as shown.

A microphone detects a maximum of sound at position X .
The microphone is now moved from X to Y.
As the microphone is moved from X to Y, a series of maxima and minima of sound are detected.
The microphone detects the second minimum of sound at position Y.
The wavelength of sound emitted by the loudspeakers is
A $\quad 0.17 \mathrm{~m}$
B $\quad 0.24 \mathrm{~m}$
C $\quad 0.30 \mathrm{~m}$
D $\quad 0.40 \mathrm{~m}$
E $\quad 0.60 \mathrm{~m}$.
19. A ray of red light passes from air into a transparent block as shown.

The speed of this light in the block is
A $1.39 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 1.91 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 2.62 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
D $3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
E $\quad 4.73 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$.
20. The diagram shows the path of three rays of red light P, Q and R in glass.

The rays are incident at the glass-air boundary as shown.

The refractive index of the glass for this light is 1.50 .
Which of these rays pass from the glass into the air at this boundary?
A Ponly
B R only
C Q and R only
D P and Q only
E P, Q and R
21. Four resistors are connected as shown.

The total resistance between X and Y is
A 1.0Ω
B 8.9Ω
C $9 \cdot 1 \Omega$
D 11Ω
E $\quad 20 \Omega$.

Back to Table

22. A resistor of resistance 100Ω is rated at 4 W .

The maximum voltage which can be applied across the resistor without exceeding its power rating is

A 0.04 V
B $\quad 5 \mathrm{~V}$
C $\quad 20 \mathrm{~V}$
D $\quad 25 \mathrm{~V}$
E $\quad 400 \mathrm{~V}$.
23. Capacitance is measured in farads.

One farad is equivalent to
A one coulomb per volt
B one joule per volt
C one joule per coulomb
D one volt per second
E one joule per second.
24. A circuit containing a capacitor is set up as shown.

The battery has negligible internal resistance.
The maximum charge stored by the capacitor is
A $\quad 3.6 \times 10^{-4} \mathrm{C}$
B $\quad 2.4 \times 10^{-4} \mathrm{C}$
C $\quad 1.2 \times 10^{-4} \mathrm{C}$
D $3.3 \times 10^{-6} \mathrm{C}$
E $1.7 \times 10^{-6} \mathrm{C}$.
25. A circuit is set up as shown.

Capacitor C is initially uncharged.
Switch S is closed and the time taken for the capacitor to fully charge is recorded.
The switch is now opened and the capacitor is discharged.
Resistor R is replaced by a resistor of greater resistance.
The switch is again closed and the capacitor charges.
Which row in the table shows the effect of this change, if any, on the time taken to fully charge the capacitor and the maximum energy stored in the capacitor?

	Time taken to fully charge the capacitor	Maximum energy stored in the capacitor
A	increases	increases
B	decreases	decreases
C	decreases	stays the same
D	increases	stays the same
E	stays the same	decreases

[END OF QUESTION PAPER]

Marking instructions for each question

Question	Answer	Mark
1.	B	1
2.	E	1
3.	A	1
4.	A	1
5.	A	1
6.	C	1
7.	C	1
8.	D	1
9.	C	1
10.	B	1
11.	D	1
12.	B	1
13.	B	1
14.	D	1
15.	E	1
16.	B	1
17.	E	1
18.	D	1
19.	A	1
20.	D	1
21.	D	1
22.	C	1
23.	A	1
24.	C	1
25.	D	1

[END OF MARKING INSTRUCTIONS]

\square
National Qualifications

Fill in these boxes and read what is printed below.

Full name of centre

Town
\square

Surname

Number of seat

Date of birth
Day

	Month	Year	Scottish candidate number			
:---	:---					

Total marks - 130
Attempt ALL questions.

You may use a calculator.

Reference may be made to the data sheet on page 02 of this booklet and to the relationships sheet X857/76/11.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. Score through your rough work when you have written your final copy.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum Magnitude of the charge on an electron Universal Constant of Gravitation Gravitational acceleration on Earth Hubble's constant	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	$1.60 \times 10^{-19} \mathrm{C}$	Planck's constant	h
$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$					

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength (nm)	Colour	Element	Wavelength (nm)	Colour
Hydrogen	656	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
	486			509	Green
	434			480	Blue
	410		Lasers		
	389		Element	Wavelength (nm)	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$	Melting point (K)	Boiling point (K)
Aluminium	$2 \cdot 70 \times 10^{3}$	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots.
Sea Water	$1 \cdot 02 \times 10^{3}$	264	377
Water	$1 \cdot 00 \times 10^{3}$	273	373
Air	$1 \cdot 29$	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Total marks - 130
 Attempt ALL questions

1. A skier launches from a ramp. The skier leaves the ramp with a launch velocity of $16.0 \mathrm{~m} \mathrm{~s}^{-1}$ at $42 \cdot 0^{\circ}$ to the horizontal.

The effects of air resistance can be ignored.
(a) Calculate
(i) the horizontal component of the launch velocity of the skier Space for working and answer
(ii) the vertical component of the launch velocity of the skier.

1. (continued)

(b) Calculate the time taken for the skier to reach the maximum height h after launch.
Space for working and answer
(c) The skier takes a further 1.40 s to travel from the maximum height h to the ground.
Determine the horizontal distance the skier travels from leaving the ramp until landing.
Space for working and answer
(d) State how the value of the kinetic energy of the skier just before landing on the ground compares to their kinetic energy as they leave the ramp. Justify your answer.

Marking instructions for each question

Question			Expected response	Max mark	Additional guidance
1.	(a)	(i)	$\begin{aligned} & \left(v_{h}=16 \cdot 0 \cos 42 \cdot 0\right) \\ & v_{h}=11.9 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	1	Accept:12, 11.89, 11.890
		(ii)	$\begin{aligned} & \left(v_{v}=16.0 \sin 42 \cdot 0\right) \\ & v_{v}=10.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	1	Accept: 11, 10.71, 10.706
	(b)		$\begin{align*} & v=u+a t \tag{1}\\ & 0=10 \cdot 7+(-9 \cdot 8) t \tag{1}\\ & t=1 \cdot 1 \mathrm{~s} \tag{1} \end{align*}$	3	Or consistent with (a)(ii) u and a must have opposite signs Accept: 1, 1.09, 1.092 For alternative methods: 1 mark for all relationships 1 mark for all substitutions 1 mark for final answer
	(c)		$\begin{align*} & s=v t \tag{1}\\ & s=11.9 \times(1.1+1.40) \tag{1}\\ & s=29.8 \mathrm{~m} \tag{1} \end{align*}$	3	Or consistent with (a)(i) and (b) Accept: 29.75, 29.750 Also accept 30
	(d)		Greater The skier has a greater speed/ velocity as they land.	2	Potential energy at take-off is transferred/converted to kinetic energy.

2. A train consists of a steam engine coupled to a carriage. The train is accelerating along a straight level track.

The steam engine provides a driving force of $1.15 \times 10^{5} \mathrm{~N}$.
The mass of the steam engine is $9.75 \times 10^{4} \mathrm{~kg}$.
The mass of the carriage and passengers is $3.56 \times 10^{4} \mathrm{~kg}$.
The effects of friction can be ignored.
(a) Determine the tension in the coupling between the steam engine and the carriage.
Space for working and answer

Back to Table

2. (continued)
(b) Later in the journey, the train is travelling at a constant speed as it approaches a bridge. Two students are standing on the bridge.

(i) The engine driver sounds a whistle. The whistle emits sound with a frequency of 511 Hz .
The frequency of the sound heard by the students standing on the bridge is 531 Hz .
The speed of sound in air is $340 \mathrm{~m} \mathrm{~s}^{-1}$.
Calculate the speed of the train.
Space for working and answer
(ii) One student suggests that a passenger sitting in the carriage behind the engine will hear a lower frequency of sound than the frequency emitted by the whistle.

State whether the student is correct.
You must justify your answer.

Back to Table

Question			Expected response	Max mark	Additional guidance
2.	(a)		$\begin{align*} & F=m a \tag{1}\\ & 1.15 \times 10^{5}=\left(9.75 \times 10^{4}+3.56 \times 10^{4}\right) \times a \tag{1}\\ & (F=m a) \\ & F=3.56 \times 10^{4} \times\left(\frac{1.15 \times 10^{5}}{1.331 \times 10^{5}}\right) \tag{1}\\ & F=3.08 \times 10^{4} \mathrm{~N} \tag{1} \end{align*}$	4	Accept 3.1, 3.076, 3.0759 $F=m a \quad$ anywhere, 1 mark
	(b)	(i)	$\begin{align*} & f_{0}=f_{s}\left(\frac{v}{v \pm v_{S}}\right) \tag{1}\\ & 531=511\left(\frac{340}{340-v_{S}}\right) \tag{1}\\ & v_{S}=13 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Accept $f_{0}=f_{s}\left(\frac{v}{v-v_{S}}\right)$ Accept 10, 12•8, 12•81
		(ii)	Not correct/incorrect The passenger and engine are travelling at the same velocity. (1)	2	MUST JUSTIFY Accept: The passenger is travelling at the same speed and in the same direction as the whistle/engine. The distance between the whistle/engine and passenger remains constant.

3. A manufacturer tests whether a Perspex lens will break during an impact.

The lens is placed on a stand and a steel ball is dropped from rest onto the lens.

The ball has a mass of $1.59 \times 10^{-2} \mathrm{~kg}$ and is dropped from a height of 1.27 m above the lens.

(a) Calculate the speed of the ball as it reaches the lens.

Space for working and answer

Back to Table

3. (continued)
(b) The ball collides with the lens and rebounds upwards.

The magnitude of the change in momentum of the ball is $0.14 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the speed of the ball immediately after it rebounds from the lens.

Space for working and answer
(c) The collision between the ball and the lens is inelastic.

Explain what is meant by an inelastic collision.
(d) The test is repeated with a second lens made of a softer material. Explain why this would make the lens less likely to break.

Back to Table

Question		Expected response	Max mark	Additional guidance
3.	(a)	$\begin{align*} & v^{2}=u^{2}+2 a s \tag{1}\\ & v^{2}=0^{2}+2 \times(-) 9 \cdot 8 \times(-) 1 \cdot 27 \tag{1}\\ & v=5 \cdot 0 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Accept: 5, 4.99, 4.989 a and s must have the same sign, otherwise max 1 mark. For alternative methods: 1 mark for all relationships 1 mark for all substitutions 1 mark for final answer eg $\begin{aligned} & E_{p}=m g h \\ & E_{p}=1.59 \times 10^{-2} \times 9.8 \times 1.27 \\ & E_{k}=\frac{1}{2} m v^{2} \\ & \left(1.59 \times 10^{-2} \times 9.8 \times 1.27\right)=\frac{1}{2} \times 1.59 \times 10^{-2} \times v^{2} \\ & v=5.0 \mathrm{~ms}^{-1} \end{aligned}$
	(b)	$\begin{align*} & F t=m v-m u \tag{1}\\ & 0.14=\left(1.59 \times 10^{-2} \times v\right)-\left(1.59 \times 10^{-2} \times-5.0\right) \\ & v=3.8 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Or consistent with (a) Accept: 4, 3•81, $3 \cdot 805$ $F t$ and u must have opposite signs otherwise max 1 mark. Accept: $\begin{aligned} & \Delta p=m v-m u \\ & p=m v \end{aligned}$ Do not accept $p=m v-m u$
	(c)	Kinetic energy is greater before (the collision) than after. OR Kinetic energy is lost (during the collision)	1	Do not accept E_{k} before not equal to E_{k} after. Do not accept E_{k} is not conserved.
	(d)	(Softer material would) increase the time of contact and decrease the (maximum/ average) force	2	Independent marks

4. A student finds the following diagram on a website. The website states that the diagram illustrates the evolution of the Universe from the Big Bang to the present day.

Using your knowledge of physics, comment on the diagram.
5. Astronomers have recently detected gravitational waves produced by the merging of two neutron stars.
An artist's illustration of two neutron stars merging is shown.

One of the neutron stars had a mass of $3.18 \times 10^{30} \mathrm{~kg}$.
The second neutron star had a mass of $2.27 \times 10^{30} \mathrm{~kg}$.
(a) Calculate the separation of the neutron stars when the gravitational force of attraction between them was $1.59 \times 10^{39} \mathrm{~N}$.

Space for working and answer

Back to Table

5. (continued)
(b) An interferometer is a device that can be used to detect gravitational waves.

In the interferometer, a beam of coherent light from a laser is split into two by a beam splitter.
The two beams then travel down the interferometer arms, reflect from mirrors, and finally meet to produce an interference pattern.

(i) Explain, in terms of waves, how a minimum is formed in the interference pattern.

Page 30
Back to Table
5. (b) (continued)
(ii) Each interferometer arm is 4.0 km long.

A gravitational wave changes the length of the arms, affecting the interference pattern produced.
The change in length of one of the arms is approximately $4.0 \times 10^{-18} \mathrm{~m}$.

In terms of orders of magnitude, compare the change in length of the interferometer arm with its original length.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
5.	(a)		$\begin{align*} & F=G \frac{m_{1} m_{2}}{r^{2}} \tag{1}\\ & 1.59 \times 10^{39}=6.67 \times 10^{-11} \times \frac{3 \cdot 18 \times 10^{30} \times 2 \cdot 27 \times 10^{30}}{r^{2}} \tag{1}\\ & r=5.50 \times 10^{5} \mathrm{~m} \tag{1} \end{align*}$	3	Accept: 5•5, 5•503, 5•5029
	(b)	(i)	Waves meet 180° /completely/totally/exactly out of phase OR Crest meets trough OR Path difference $=\left(m+\frac{1}{2}\right) \lambda$	1	Can be shown by appropriate diagram
		(ii)	$\left(\frac{4.0 \times 10^{-18}}{4.0 \times 10^{3}}=\right) 10^{-21}$ (change in length is) $\underline{21}$ orders of magnitude smaller	2	Accept $\left(\frac{10^{-18}}{10^{3}}=\right) 10^{-21}$ OR $\begin{equation*} (-18-3)=-21 \tag{1} \end{equation*}$ Accept 21 smaller on its own Do not accept 21 times smaller on its own (0) Accept $\left(\frac{10^{3}}{10^{-18}}=\right) 10^{21}$ OR $\begin{equation*} 3-(-18)=21 \tag{1} \end{equation*}$ Accept: the length of the arm is 21 orders of magnitude greater than the change in length.

6. White light from the Sun is analysed to produce the following absorption spectrum.

The spectral lines are known as Fraunhofer lines.
(a) Some Fraunhofer lines are produced by the transition of electrons between energy levels in hydrogen atoms.
Some of the energy levels of the hydrogen atom are shown.

$$
\mathrm{E}_{0}=-21.8 \times 10^{-19} \mathrm{~J}
$$

(i) One of the Fraunhofer lines is due to the electron transition from E_{1} to E_{4}.
Determine the frequency of the photon absorbed when an electron makes this transition.

Space for working and answer
6. (a) (continued)
(ii) Calculate the wavelength of the photon absorbed.

Space for working and answer
(iii) Determine the colour of the light absorbed during this electron transition.
[Turn over

6. (continued)

(b) The spectral lines observed in the spectrum from a distant galaxy are redshifted. A galaxy known as NGC 6745 has a recessional velocity of $4.51 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$.

Calculate the redshift of the light from this galaxy.
Space for working and answer
(c) The light from the majority of galaxies in the Universe is redshifted. Explain how this evidence supports the Big Bang theory.

Back to Table

Question			Expected response	Max mark	Additional guidance
6.	(a)	(i)	$\begin{align*} & E_{2}-E_{1}=h f \tag{1}\\ & \left(-0.871 \times 10^{-19}-\left(-5.45 \times 10^{-19}\right)=\right. \tag{1}\\ & 6.63 \times 10^{-34} \times f \\ & f=6.91 \times 10^{14} \mathrm{~Hz} \tag{1} \end{align*}$	3	Accept: 6•9, 6•906, 6•9065 Accept: $\begin{aligned} & E_{1}-E_{4}=-h f \\ & E_{4}-E_{1}=h f \\ & (\Delta) E=h f \end{aligned}$ for relationship mark anywhere Accept: $\begin{aligned} & \left(5.45 \times 10^{-19}-0.871 \times 10^{-19}\right)= \\ & 6.63 \times 10^{-34} \times f \end{aligned}$ If $\left(0.871 \times 10^{-19}-5.45 \times 10^{-19}\right)$ shown for substitution, maximum 1 mark for relationship
		(ii)	$\begin{equation*} v=f \lambda \tag{1} \end{equation*}$ $\begin{equation*} 3.00 \times 10^{8}=6.91 \times 10^{14} \times \lambda \tag{1} \end{equation*}$ $\begin{equation*} \lambda=4.34 \times 10^{-7} \mathrm{~m} \tag{1} \end{equation*}$	3	Or consistent with (a)(i) Accept: 4•3, 4•342, 4•3415
		(iii)	Blue-violet	1	Or consistent with (a)(ii)
	(b)		$\begin{align*} & z=\frac{v}{c} \tag{1}\\ & z=\frac{4.51 \times 10^{6}}{3.00 \times 10^{8}} \tag{1}\\ & z=0.0150 \tag{1} \end{align*}$	3	Accept: 0.015, 0.01503, 0.015033
	(c)		Redshift is evidence that the Universe is expanding Expanding Universe is evidence supporting the Big Bang theory	2	Accept: Redshift is evidence that the galaxies are moving away from each other.

7. The Large Hadron Collider (LHC) at CERN has been upgraded recently. One of the upgrades is the addition of a linear particle accelerator known as Linac4.

Linac4 accelerates hydrogen ions before they enter the main LHC.
Linac4 consists of hollow metal tubes placed in a vacuum. The hydrogen ions are accelerated across the gaps between the tubes.

Part of Linac4 is shown below.

(a) (i) Explain why an alternating supply voltage is used in Linac4.
(ii) Suggest one reason why the lengths of the tubes increase along Linac4.

7. (continued)

(b) Linac4 accelerates the hydrogen ions to a speed of $0 \cdot 50 c$. The hydrogen ions then travel through a connecting tube before entering the LHC.
The connecting tube has a length of 13 m in the frame of reference of a stationary observer.
Calculate the length of the connecting tube in the frame of reference of the hydrogen ions.
(c) Hydrogen ions can be collided within the LHC to produce other particles. One of the particles produced is known as a π^{-}meson. The π^{-}meson is negatively charged.
(i) State what is meant by the term meson.
(ii) The π^{-}meson enters a region of magnetic field and follows the path shown.

Determine the direction of the magnetic field acting upon the π^{-}meson.
7. (continued)
(d) In July 2018, scientists at CERN announced that the Higgs boson had been observed to decay into two bottom quarks.
(i) One of the fundamental forces involved in the decay of the Higgs boson is the weak nuclear force.

Name a force mediating particle for the weak nuclear force.
(ii) A bottom quark has a mass-energy equivalence of $4 \cdot 20 \mathrm{GeV}$.
$\left(1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}\right)$
Determine the mass of the bottom quark.
Space for working and answer

$$
\because \quad \rightarrow 10 \quad \text { - }
$$

Space for worng and

Back to Table

Question			Expected response	Max mark	Additional guidance
7.	(a)	(i)	To ensure the (accelerating) force on the hydrogen ion is in the same direction. OR To ensure the hydrogen ions accelerate in the same direction. OR To ensure that the direction of the electric field is correct when the hydrogen ions pass across the gaps.	1	Response must make some implication of 'same direction'.
		(ii)	As the speed of hydrogen ions increases, they travel further in the same time.	1	Accept: So that the hydrogen ions are at the ends of the tubes when the field changes polarity. OR So that a constant frequency AC supply can be used.
	(b)		$\begin{align*} & l^{\prime}=l \sqrt{1-\left(\frac{v}{c}\right)^{2}} \tag{1}\\ & l^{\prime}=13 \sqrt{1-\left(\frac{0.50 c}{c}\right)^{2}} \tag{1}\\ & l^{\prime}=11 \mathrm{~m} \tag{1} \end{align*}$	3	Accept: 10, 11•3, 11.26 Alternative substitutions: $\begin{aligned} & l^{\prime}=13 \sqrt{1-(0.50)^{2}} \\ & l^{\prime}=13 \sqrt{1-\left(\frac{0 \cdot 50 \times 3 \cdot 00 \times 10^{8}}{3 \cdot 00 \times 10^{8}}\right)^{2}} \end{aligned}$
	(c)	(i)	A (composite) particle made of a quark-antiquark pair.	1	Do not accept: made of two quarks
		(ii)	Into the page	1	
	(d)	(i)	W boson OR Z boson	1	
		(ii)	$\begin{align*} & 4 \cdot 20 \mathrm{GeV}=4 \cdot 20 \times 10^{9} \times 1 \cdot 60 \times 10^{-19} \\ & E=m c^{2} \tag{1}\\ & \left(4.20 \times 10^{9} \times 1.60 \times 10^{-19}\right)=m \times\left(3 \cdot 00 \times 10^{8}\right)^{2} \tag{1}\\ & m=7 \cdot 47 \times 10^{-27} \mathrm{~kg} \tag{1} \end{align*}$	4	Accept: 7•5, 7•467, 7.4667 Relationship anywhere 1 mark.

8. A student investigates the photoelectric effect using the apparatus shown.

The student notices that when white light is incident on metal plate P, the reading on the ammeter is 0 A . However, when ultraviolet radiation is incident on plate P , the reading on the ammeter is greater than 0 A .
(a) Explain why ultraviolet radiation produces a reading greater than 0 A on the ammeter, but white light does not.
(b) The energy of a photon of ultraviolet radiation incident on plate P is $8.0 \times 10^{-19} \mathrm{~J}$.

The work function of the metal is $6.9 \times 10^{-19} \mathrm{~J}$.
The power supply is set to 12.0 V .
(i) Determine the maximum kinetic energy of an electron ejected from the surface of metal plate P.
Space for working and answer
8. (b) (continued)
(ii) Show that the kinetic energy gained by the electron as it accelerates from plate P to plate Q is $1.92 \times 10^{-18} \mathrm{~J}$.
Space for working and answer
(iii) Determine the maximum speed of this electron as it reaches plate Q.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
8.	(a)		The frequency of the UV is greater than the threshold frequency, whereas the frequency of white light is less than the threshold frequency. OR The energy of a photon of UV is greater than the work function, whereas the energy of a photon of white light is less than the work function.	1	Response must refer to both UV and white light.
	(b)	(i)	$1 \cdot 1 \times 10^{-19} \mathrm{~J}$	1	
		(ii)	$\begin{align*} & W=Q V \tag{1}\\ & W=1.60 \times 10^{-19} \times 12.0 \tag{1}\\ & W=1.92 \times 10^{-18} \mathrm{~J} \end{align*}$	2	SHOW
		(iii)	$\begin{align*} & E_{k}=1 \cdot 1 \times 10^{-19}+1.92 \times 10^{-18} \tag{1}\\ & E_{k}=\frac{1}{2} m v^{2} \tag{1}\\ & \left(1 \cdot 1 \times 10^{-19}+1 \cdot 92 \times 10^{-18}\right)= \\ & \frac{1}{2} \times 9 \cdot 11 \times 10^{-31} \times v^{2} \tag{1}\\ & v=2 \cdot 11 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	4	Or consistent with (b)(i) Accept: 2•1, 2•111, 2-1111 Relationship anywhere 1 mark

Back to Table

9. Dental braces are used to adjust the position of a patient's teeth.

Bonding cement is used to attach brackets to each tooth and then a stainless steel wire is attached to the brackets.

(a) The tension in the wire exerts two forces to move one of the patient's front teeth backward.
Both forces are 19.5 N as shown.

(i) Determine the magnitude of the resultant force applied to the tooth.

Space for working and answer
(ii) Explain why the wire does not cause the tooth to move sideways.
(b) Light from an LED is used to harden the bonding cement applied to the patient's teeth.
(i) The irradiance of the light from the LED on the cement on one tooth is $11800 \mathrm{Wm}^{-2}$.

The bonding cement on this tooth has an area of $1.24 \times 10^{-5} \mathrm{~m}^{2}$.
The cement requires $2 \cdot 10 \mathrm{~J}$ of energy to harden.
Determine the minimum time for which the light from the LED must be applied.
Space for working and answer
9. (b) (continued)
(ii) Concern has been raised about the effect the light from the LED may have upon dental assistants' eyes.

A medical researcher investigates how the irradiance I varies with distance d from the LED.

The following results are obtained.

$\boldsymbol{d}(\mathrm{m})$	0.30	0.40	0.50	0.60
$I\left(\mathrm{~W} \mathrm{~m}^{-2}\right)$	6.3	3.5	2.3	1.6

Use all the data to show that the LED acts as a point source over this range.
9. (b) (continued)
(iii) The LED is made from doped semiconductor material to create a p-n junction.
The diagram represents the band structure of the LED.

(A) State what is meant by a doped semiconductor.
(B) A voltage is applied across the LED so that it is forward biased and emits light.
Using band theory, explain how the LED emits light.

Back to Table

Question			Expected response	Max mark	Additional guidance
9.	(a)	(i)	$\begin{align*} & F=19.5 \sin 14.0 \tag{1}\\ & F_{R}=(2 \times 19.5 \sin 14.0)=9.43 \mathrm{~N} \tag{1} \end{align*}$ OR $\begin{align*} & F_{R}=2 \times 19.5 \sin 14.0 \tag{1}\\ & F_{R}=9.43 \mathrm{~N} \tag{1} \end{align*}$	2	Accept: 9.4, 9.435, 9.4350 Or by scale diagram: 1 for suitable scale diagram 1 for correct answer
		(ii)	No resultant force in this direction/ the sideways direction OR Unbalanced force in this direction/ the sideways direction is 0 N OR The components of the force at 90° to the direction of the movement are equal and opposite/balanced. (1)	1	Accept reference to horizontal forces/left and right direction, since the diagram orientation makes it clear which forces are being referred to. Do not accept: 'the forces are balanced' alone
	(b)	(i)	$\begin{align*} & I=\frac{P}{A} \tag{1}\\ & 11800=\frac{P}{1.24 \times 10^{-5}} \tag{1} \end{align*}$ $\begin{align*} & P=\frac{E}{t} \tag{1}\\ & \left(11800 \times 1 \cdot 24 \times 10^{-5}\right)=\frac{2 \cdot 10}{t} \tag{1}\\ & t=14.4 \mathrm{~s} \tag{1} \end{align*}$	5	Accept: 14, 14•35, 14•352 $I=\frac{P}{A}$ anywhere, 1 mark $P=\frac{E}{t}$ anywhere, 1 mark
		(ii)	$\begin{align*} & 6 \cdot 3 \times 0.30^{2}=0.57 \\ & 3.5 \times 0.40^{2}=0.56 \\ & 2 \cdot 3 \times 0 \cdot 50^{2}=0.58 \\ & 1 \cdot 6 \times 0.60^{2}=0.58 \tag{2} \end{align*}$ Statement of $I \times d^{2}=$ constant, so LED is a point source	3	All four calculations correct (2) Three calculations correct (1) <Three calculations correct (0) This conclusion mark is only available if consistent with the calculations shown. Graphical method: Graph drawn correctly Best fit line through origin Statement of $I \propto \frac{1}{d^{2}}$, so LED is a point source
		(iii) (A)	A semiconductor that has (specific) impurities added	1	

(B)				Any answer using recombination of holes and electrons on its own, with no reference to band theory, is worth 0 marks Any wrong physics eg holes move up (from valence band to conduction band)- 0 marks
(Voltage applied causes) electrons to move from the conduction band of the n-type (semiconductor) towards the conduction band of the p-type (semiconductor). To access this mark, the direction the electrons move must be clear.				
Electrons 'fall' from the conduction band into the valence band (on either side of the junction)	(1)			

10. A technician carries out an experiment to determine the wavelength of monochromatic light from a laser.

(a) A pattern of bright spots is observed on the screen.

The technician measures the angle θ between the central maximum and the second order maximum five times.

The results are shown.
14.0°
13.5°
$14 \cdot 5^{\circ}$
$14 \cdot 5^{\circ}$
13.0°
(i) Calculate
(A) the mean value for the angle θ

Space for working and answer
(B) the approximate random uncertainty in this value.
10. (a) (continued)
(ii) The spacing between the lines on the grating is $4.00 \times 10^{-6} \mathrm{~m}$. Calculate the wavelength of the light from the laser.

Space for working and answer
(iii) The technician repeats the experiment and this time measures the angle between the central maximum and the third order maximum.
Explain why this gives a more precise value for the wavelength of the light.
(b) The laser is now replaced by a source of white light. The pattern observed on the screen consists of a white central maximum and a series of continuous spectra on each side of the white central maximum.

Explain, in terms of path difference, why the central maximum is white.

Back to Table

11. The use of analogies from everyday life can help people to better understand physics concepts.
The arrangement of books on the shelves of a bookcase can be used as an analogy for the Bohr model of the atom.

Using your knowledge of physics, comment on this analogy.
12. A technician fills a hollow prism with a sugar solution.

The technician shines red light from a laser into the prism.
The angle through which the light refracts depends upon the concentration of the sugar solution.

(a) (i) Calculate the refractive index of this solution.

Space for working and answer
(ii) State how the frequency of the light in the solution compares to the frequency of the light in air.
12. (continued)
(b) The prism is now filled with a more concentrated sugar solution, which has a greater refractive index.

On the diagram below, draw the path the ray will now follow inside the prism.

(An additional diagram, if required can be found on page 45.)
(c) The experiment is repeated using green light from a laser and the more concentrated sugar solution. The light enters the prism at the same angle as before.

Explain the difference in the path taken by the green light compared to the path taken by the red light.

Back to Table

Question			Expected response	Max mark	Additional guidance
12.	(a)	(i)	$\begin{align*} & n=\frac{\sin \theta_{1}}{\sin \theta_{2}} \tag{1}\\ & n=\frac{\sin 47 \cdot 0}{\sin 31 \cdot 0} \tag{1}\\ & n=1.42 \tag{1} \end{align*}$	3	Also accept 1.4, 1-420, 1.4200
		(ii)	(frequency is the) same	1	
	(b)		Ray drawn at smaller angle of refraction	1	Ignore any emergent rays Ray must be passably straight.
	(c)		green light has a higher/larger/ greater frequency so the refractive index is greater (and the ray refracts more/at a smaller angle)	2	Any mention of a greater angle of refraction or no change in the angle of refraction - 0 marks

13. A student connects a signal generator, which provides an alternating current, to an oscilloscope.

(a) State what is meant by an alternating current.
(b) The oscilloscope screen shows the output of the signal generator.

The Y -gain setting on the oscilloscope is $5.0 \mathrm{~V} / \mathrm{div}$.
The timebase setting on the oscilloscope is $1.0 \mathrm{~ms} / \mathrm{div}$.
(i) Determine the peak voltage of the output of the signal generator.

Back to Table

13. (b) (continued)
(ii) Determine the frequency of the output of the signal generator. Space for working and answer
(c) The student connects a diode to the circuit as shown. The settings on the signal generator and the oscilloscope are unchanged.

Current can only flow in one direction through a diode.
This changes the trace on the oscilloscope screen.
On the diagram below, draw the new trace seen on the oscilloscope screen.

(An additional diagram, if required can be found on page 45.)

Back to Table

Question			Expected response	Max mark	Additional guidance
13.	(a)		(An alternating current) changes direction and (instantaneous) value with time.	1	
	(b)	(i)	$\begin{aligned} & \left(V_{\text {peak }}=5 \cdot 0 \times 3\right) \\ & V_{\text {peak }}=15 \mathrm{~V} \end{aligned}$	1	
		(ii)	$\begin{align*} & \left(T=1 \cdot 0 \times 10^{-3} \times 4=4 \cdot 0 \times 10^{-3} \mathrm{~s}\right) \\ & f=\frac{1}{T}(1) \tag{1}\\ & f=\frac{1}{4 \cdot 0 \times 10^{-3}}(1) \tag{1}\\ & f=250 \mathrm{~Hz} \end{align*}$	3	
	(c)		Same frequency and peak voltage (1) Trace shows 'half-wave rectification'	2	Positive or negative half of the cycle accepted.

14. A student carries out an experiment, using the apparatus shown, to determine a value for the internal resistance r of a cell.

(a) Describe how the student would use this apparatus, and analyse the data obtained, to determine the value for the internal resistance of the cell.
(b) The internal resistance of the cell is determined to be $0 \cdot 50 \Omega$.

Four identical cells are now connected to a motor and a variable resistor as shown.
The EMF of each cell is 1.5 V .

(i) State what is meant by an EMF of 1.5 V .
(ii) Switch S is now closed. The reading on the ammeter is 0.20 A . Determine the resistance R of the variable resistor.
14. (continued)
(c) The resistance of the variable resistor is now increased. State what happens to the reading on the voltmeter.
Justify your answer.

Back to Table

Question			Expected response	Max mark	Additional guidance
14.	(a)		Adjust variable resistor and take readings of V and I. Plot a graph of V against I. Gradient of graph $=-r$.	3	Measure open circuit voltage $E /$ measure the voltage E when the switch is open. Close the switch and take a reading of V and I. Calculate r using $E=V+I r$.
	(b)	(i)	$1 \cdot 5 \mathrm{~J}$ of energy is supplied to/gained by each coulomb (of charge passing through the cell).	1	
		(ii)	$\begin{align*} & E=V+I r \text { and } V=I R \tag{1}\\ & 6 \cdot 0=(0 \cdot 20 R+(0 \cdot 20 \times 2 \cdot 0)) \tag{1}\\ & R=28 \Omega \tag{1}\\ & \left(R_{v}=28-20\right) \\ & R_{v}=8.0 \Omega \tag{1} \end{align*}$	4	Accept: $E=I(R+r)$ Accept: 8, 8.00, 8.000
	(c)		Increases Current is less Lost volts (Ir) decreases	3	Look for this statement first - if incorrect or missing then (0 marks).

15. A student carries out an experiment to measure the terminal velocity of ball bearings with different diameters falling through glycerol.
Each ball bearing is dropped into a long tube filled with glycerol.

(a) Explain in terms of the forces acting on the ball bearing, why it reaches its terminal velocity.
16. (continued)
(b) The student measures the diameter d of each ball bearing and records the corresponding terminal velocity v_{t}.
The results are shown in the table.

$\boldsymbol{d}(\mathrm{m})$	$d^{2}\left(\mathrm{~m}^{2}\right)$	$v_{t}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
3.15×10^{-3}	0.99×10^{-5}	0.05
4.77×10^{-3}	2.28×10^{-5}	0.10
6.34×10^{-3}	4.02×10^{-5}	0.18
9.52×10^{-3}	9.06×10^{-5}	0.32
12.65×10^{-3}	16.00×10^{-5}	0.52

(i) Using the square-ruled paper on page 42, draw a graph of v_{t} against d^{2}.
(The table of results is also shown on page 43, opposite the square-ruled paper.)
(ii) The student suspects that the results show that there is a systematic uncertainty in the measurements.
Suggest a reason why the student has come to this conclusion.
(iii) Calculate the gradient of your graph.
15. (b) (continued)
(iv) The terminal velocity v_{t} of each ball bearing is given by

$$
v_{t}=\frac{375 g}{\eta} \times d^{2}
$$

where η is the viscosity of the glycerol in pascal seconds (Pas)
d is the diameter of the ball bearing in m g is gravitational field strength on Earth in $\mathrm{N} \mathrm{kg}^{-1}$.

Use the gradient of your graph to determine the viscosity of the glycerol.
Space for working and answer

Back to Table

Question			Expected response	Max mark	Additional guidance
15.	(a)		The frictional force/drag acting on the ball bearing increases (as its speed increases). The frictional force/drag and weight become balanced.	2	
	(b)	(i)	Appropriate labels and units Suitable scales Correct plotting of points and appropriate line of best fit	3	Allow for axes starting at zero or broken axes or at an appropriate value. Accuracy of plotting should be easily checkable with the scale chosen. Do not penalise if the candidate plots d^{2} against v_{t}.
		(ii)	There is a non-zero y-intercept/ The line of best fit does not go through the origin	1	
		(iii)	$\begin{equation*} m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \tag{1} \end{equation*}$ Correctly calculated gradient	2	Must be consistent with graph drawn for (i). Candidates are asked to calculate the gradient of their graph. Unit not required but if a unit is given it must be correct. Tolerance required depending upon line of best fit drawn by the candidate.
		(iv)	$\begin{equation*} m=\frac{375 g}{\eta} \tag{1} \end{equation*}$ Correctly calculated viscosity consistent with b (iii), including correct unit.	2	

[END OF MARKING INSTRUCTIONS]

Physics
 Paper 1 - Multiple choice

FRIDAY, 13 MAY
9:00 AM - 9:45 AM

Total marks - 25
Attempt ALL questions.
You may use a calculator.
Instructions for the completion of Paper 1 are given on page 02 of your answer booklet X857/76/02.
Record your answers on the answer grid on page 03 of your answer booklet.
Reference may be made to the data sheet on page 02 of this question paper and to the relationships sheet X857/76/22.

Space for rough work is provided at the end of this booklet.
Before leaving the examination room you must give your answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

Back to Table

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Magnitude of the charge on an electron Universal Constant of Gravitation Gravitational acceleration on Earth Hubble's constant$\quad g$	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$	

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength (nm)	Colour	Element	Wavelength (nm)	Colour
Hydrogen	656	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
	486			509	Green
	434			480	Blue
	410		Lasers		
	389		Element	Wavelength (nm)	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $\left(\mathrm{kg} \mathrm{m}^{\mathbf{- 3}}\right)$	Melting point (K)	Boiling point (K)
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots.
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Back to Table

Total marks - 25

Attempt ALL questions

1. A ball is thrown vertically upwards and falls back to its starting position. The acceleration-time graph represents the motion of the ball.

Which of the following velocity-time graphs represents the same motion?
A

D

B

E

C

Back to Table

2. A student uses the apparatus shown to determine the acceleration of a trolley as it moves down a ramp.

The trolley is released from rest at point P and moves down the ramp.
A card attached to the trolley passes through a light gate at point Q .
The time for the card to pass through the light gate is displayed on the electronic timer.
The vehicle's acceleration a is determined using the relationship

$$
v^{2}=u^{2}+2 a s
$$

The student makes the following statements about the terms u, s, and v :
। $u=0 \mathrm{~m} \mathrm{~s}^{-1}$
II $s=$ the length of the card
III $v=\frac{\text { distance between } \mathrm{P} \text { and } \mathrm{Q}}{\text { time displayed on timer }}$
Which of these statements is/are correct?
A I only
B II only
C I and II only
D I and III only
E I, II and III

Back to Table

3. A spacecraft unloads cargo on the surface of the Moon.

The gravitational field strength on the Moon is $1.6 \mathrm{Nkg}^{-1}$.

A package of mass 3.0 kg moves down the ramp.
The component of the weight of the package acting parallel to the ramp is:

A	0.89 N
B	2.7 N
C	4.0 N
D	4.8 N
E	16 N.

[Turn over

Back to Table

4. Two blocks are suspended from a ceiling by ropes as shown.

Which row in the table shows the tension in the rope at point X and the tension in the rope at point Y ?

	Tension at point X (N)	Tension at point Y (N)
A	27	15
B	120	29
C	120	150
D	260	29
E	260	150

5. During an experiment a student inside a lift stands on a newton balance.

The mass of the student is 50.0 kg .
The lift accelerates upwards at $1.2 \mathrm{~m} \mathrm{~s}^{-2}$.
The reading on the newton balance is:
A $\quad 60 \mathrm{~N}$
B $\quad 430 \mathrm{~N}$
C 490 N
D 550 N
E 590 N .
6. Water flows at a rate of $1.0 \times 10^{6} \mathrm{~kg}$ per second over the Victoria Falls.

The Victoria Falls are 120 m high.
The total power delivered by the water in falling through 120 m is:
A $\quad 1.2 \times 10^{12} \mathrm{~W}$
B $\quad 1.2 \times 10^{9} \mathrm{~W}$
C $\quad 1.2 \times 10^{8} \mathrm{~W}$
D $8.5 \times 10^{-10} \mathrm{~W}$
E $8.5 \times 10^{-11} \mathrm{~W}$.

Back to Table

7. A spacecraft passes the Earth at a speed of $0.4 c$.

A light on the spacecraft pulses on and off.
A passenger on the spacecraft measures the time between the pulses as 2.5 s .
An observer on Earth measures the time between the pulses as:
A 2.3 s
B 2.5 s
C $\quad 2.7 \mathrm{~s}$
D 3.0 s
E 3.2 s .
8. A student makes the following statements about the expanding Universe:

I The evidence supporting the existence of dark matter comes from estimations of the mass of galaxies.

II The evidence supporting the existence of dark energy comes from the accelerating rate of expansion of the Universe.
III The peak wavelength of radiation emitted by hotter stars is longer than that for cooler stars.

Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E I, II and III
9. A police car is travelling at a constant speed of $31.0 \mathrm{~m} \mathrm{~s}^{-1}$ towards a stationary observer. The siren on the car emits a sound with a frequency of 820 Hz .
The speed of sound in air is $340 \mathrm{~m} \mathrm{~s}^{-1}$.
The frequency of the sound heard by the observer is:
A 745 Hz
B 751 Hz
C 820 Hz
D 895 Hz
E $\quad 902 \mathrm{~Hz}$.

Back to Table

10. A proton enters a region of magnetic field as shown.

The direction of the force exerted by the magnetic field on the proton as it enters the field is:

A out of the page
B into the page
C to the left
D to the right
E towards the bottom of the page.
11. The masses of three particles are shown.

Particle	Mass (kg)
Electron	9.11×10^{-31}
Proton	1.673×10^{-27}
Higgs boson	2.22×10^{-25}

How many orders of magnitude greater is the mass of a Higgs boson compared to the mass of a proton?

A $\quad 7.54 \times 10^{-3}$
B 2
C 5
D 133
E $\quad 2.44 \times 10^{5}$

Back to Table

12. A proton consists of two up quarks and a down quark.

A student makes the following statements about protons:
I Protons are baryons.
II Protons are hadrons.
III Protons are fermions.
Which of these statements is/are correct?
A I only
B II only
C III only
D I and II only
E I, II and III
13. The following statement represents part of a radioactive decay series.

$$
X \xrightarrow{\alpha} Y \xrightarrow{\beta}{ }_{83}^{214} \mathrm{Bi}
$$

Nucleus X undergoes alpha emission to produce nucleus Y .
Nucleus Y then undergoes beta emission.
Nucleus X is:
A $\quad{ }_{85}^{218} \mathrm{At}$
B $\quad{ }_{82}^{214} \mathrm{~Pb}$
C $\quad{ }_{84}^{218} \mathrm{Po}$
D $\quad{ }_{86}^{218} \mathrm{Rn}$
E $\quad{ }_{80}^{210} \mathrm{Hg}$.

Back to Table

14. The following statement represents a nuclear reaction.

$$
{ }_{94}^{240} \mathrm{Pu} \rightarrow{ }_{92}^{236} \mathrm{U}+{ }_{2}^{4} \mathrm{He}
$$

The total mass of the particles before the reaction is $398.626 \times 10^{-27} \mathrm{~kg}$.
The total mass of the particles after the reaction is $398.615 \times 10^{-27} \mathrm{~kg}$.
The energy released in this reaction is:
A $\quad 1.1 \times 10^{-29} \mathrm{~J}$
B $3.3 \times 10^{-21} \mathrm{~J}$
C $5.0 \times 10^{-13} \mathrm{~J}$
D $\quad 9.9 \times 10^{-13} \mathrm{~J}$
E $\quad 3.6 \times 10^{-8} \mathrm{~J}$.
15. The irradiance of light incident on a surface from a point source is $20.0 \mathrm{Wm}^{-2}$. The distance between the point source and the surface is 5.0 m .
The point source is now moved to a distance of 25.0 m from the surface.
The irradiance of the light incident on the surface is now:
A $\quad 0.032 \mathrm{Wm}^{-2}$
B $\quad 0.80 \mathrm{Wm}^{-2}$
C $\quad 1.2 \mathrm{Wm}^{-2}$
D $\quad 4.0 \mathrm{Wm}^{-2}$
E $\quad 100 \mathrm{Wm}^{-2}$.
[Turn over

Back to Table

16. Light from a laser is incident on a grating as shown.

A series of interference maxima are observed on the screen.
A student makes the following statements about the interference pattern observed on the screen:
I Increasing the distance between the grating and the screen increases the distance between the observed maxima.
II Increasing the distance between the laser and the grating increases the distance between the observed maxima.
III Decreasing the distance between the slits on the grating decreases the distance between the observed maxima.

Which of the statements is/are correct?
A I only
B II only
C I and III only
D II and III only
E I, II and III

Back to Table

17. Which row in the table shows what happens to the speed, frequency, and wavelength of red light as it passes from diamond into air?

	Speed	Frequency	Wavelength
A	decreases	decreases	no change
B	decreases	no change	decreases
C	decreases	increases	increases
D	increases	no change	increases
E	increases	increases	increases

18. The output from a signal generator is connected to an oscilloscope.

The trace seen on the oscilloscope screen is shown.

The Y -gain setting on the oscilloscope is $2.0 \mathrm{~V} / \mathrm{div}$.
The time base setting on the oscilloscope is $5 \mathrm{~ms} / \mathrm{div}$.
Which row in the table gives the rms voltage and the frequency of the output from the signal generator?

	rms voltage (V)	Frequency (Hz)
A	4.2	25
B	4.2	40
C	6.0	40
D	6.0	200
E	8.5	25

[Turn over

Back to Table

19. Three resistors are connected to a 3.0 V power supply as shown.

The power supply has negligible internal resistance.
The power dissipated in the circuit is:
A 0.25 W
B $\quad 0.43 \mathrm{~W}$
C $\quad 0.75 \mathrm{~W}$
D $\quad 2.1 \mathrm{~W}$
E $\quad 4.0 \mathrm{~W}$.
20. Six resistors, each of resistance 5Ω, are connected to a 12 V power supply as shown.

The power supply has negligible internal resistance.
Which row in the table shows the total circuit resistance and the potential difference across X and Y ?

	Total circuit resistance $(\boldsymbol{\Omega})$	Potential difference across X and Y (V)
A	15	2
B	15	4
C	20	6
D	30	8
E	30	12

Back to Table

21. A circuit is set up as shown.

The resistance of the variable resistor is set to 6.0Ω.
The lost volts due to the internal resistance of the battery is:
A 1.2 V
B 4.8 V
C 6.0 V
D 7.2 V
E 8.0 V .
22. A circuit is set up as shown.

The battery has negligible internal resistance.
The capacitor is initially uncharged.
The switch is now closed.
When the reading on the voltmeter is 7.0 V , the charge stored on the capacitor is:
A $\quad 3.1 \times 10^{-5} \mathrm{C}$
B $\quad 4.4 \times 10^{-5} \mathrm{C}$
C $\quad 1.1 \times 10^{-3} \mathrm{C}$
D $1.5 \times 10^{-3} \mathrm{C}$
E $\quad 2.6 \times 10^{-3} \mathrm{C}$.

Back to Table

23. A circuit is set up as shown.

The capacitor is initially uncharged. Switch S is closed.
Which graphs show how the potential difference V_{R} across resistor R , the potential difference V_{C} across capacitor C , and the current I in the circuit, vary with time t as the capacitor charges?
A

B

C

D

E

Back to Table

24. Which row in the table describes the conduction band and the gap between the conduction band and the valence band in an insulator?

	Conduction band	Gap between conduction band and valence band
A	unfilled	bands overlap
B	full	bands overlap
C	unfilled	large gap
D	full	small gap
E	full	large gap

25. Astronomers use the following relationship to estimate the mass M of a galaxy

$$
M=\frac{v^{2} r}{G}
$$

where v is the orbital speed of a star in the outer regions of the galaxy, in $\mathrm{m} \mathrm{s}^{-1}$
r is the orbital radius of the star, in m
G is the Universal Constant of Gravitation.
A star orbits at a radius of $4.0 \times 10^{20} \mathrm{~m}$ in the outer regions of the Triangulum galaxy.
The orbital speed of the star is $120 \mathrm{~km} \mathrm{~s}^{-1}$.
Based on this information, the mass of the Triangulum galaxy is:
A $3.8 \times 10^{20} \mathrm{~kg}$
B $\quad 7.2 \times 10^{32} \mathrm{~kg}$
C $8.6 \times 10^{34} \mathrm{~kg}$
D $\quad 7.2 \times 10^{35} \mathrm{~kg}$
E $\quad 8.6 \times 10^{40} \mathrm{~kg}$.

Marking Instructions for each question

Question	Answer	Mark
1.	A	1
2.	A	1
3.	B	1
4.	E	1
5.	D	1
6.	B	1
7.	C	1
8.	D	1
9.	E	1
10.	A	1
11.	B	1
12.	E	1
13.	C	1
14.	D	1
15.	B	1
16.	A	1
17.	D	1
18.	B	1
19.	C	1
20.	B	1
21.	B	1
22.	C	1
23.	E	1
24.	C	1
25.	E	1

[END OF MARKING INSTRUCTIONS]
\square
National Qualifications

X857/76/01

Fill in these boxes and read what is printed below.

Full name of centre

Town

\square

Forename(s)

Surname

Number of seat

Date of birth

Scottish candidate number

Total marks - 130
Attempt ALL questions.

You may use a calculator.

Reference may be made to the Data Sheet on page 02 of this booklet and to the relationship sheet X857/76/11.
Care should be taken to give an appropriate number of significant figures in the final answers to calculations.
Write your answers clearly in the spaces provided in this booklet. Additional space for answers and rough work is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting. Any rough work must be written in this booklet. Score through your rough work when you have written your final copy.
Use blue or black ink.
Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

DATA SHEET

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{Js}$
Magnitude of the charge on an electron	e	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	$m_{\text {e }}$	$9.11 \times 10^{-31} \mathrm{~kg}$
Universal Constant of Gravitation	G	$6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$	Mass of neutron	m_{n}	$1.675 \times 10^{-27} \mathrm{~kg}$
Gravitational acceleration on Earth	g	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$	Mass of proton	$m_{\text {p }}$	$1.673 \times 10^{-27} \mathrm{~kg}$
Hubble's constant	H_{0}	$2.3 \times 10^{-18} \mathrm{~s}^{-1}$			

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K .

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength (nm)	Colour	Element	Wavelength (nm)	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
				Lasers	
			Element	Wavelength (nm)	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $\left(\mathbf{k g ~ m}^{-3}\right)$	Melting point (K)	Boiling point (K)
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	\ldots.	\ldots
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

1. The crossbar challenge is a football contest in which competitors try and hit the crossbar of a goal by kicking a football from the penalty spot.
The horizontal distance between the penalty spot and the crossbar is 11 m .
One competitor kicks a football with an initial velocity of $17.0 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 24.0° to the horizontal.

The football hits the crossbar.
The effects of air resistance can be ignored.
(a) (i) Calculate:
(A) the horizontal component of the initial velocity of the football

Space for working and answer
(B) the vertical component of the initial velocity of the football.

Space for working and answer

1. (a) (continued)
(ii) Show that the time taken for the football to travel from the penalty spot to the crossbar is 0.71 s .

Space for working and answer
(iii) The football is at the maximum height in its trajectory when it hits the crossbar.

Calculate the height h above the ground at which the football hits the crossbar.

Space for working and answer
(b) The next time the competitor tries the challenge, they kick the football at the same angle with an initial speed less than $17.0 \mathrm{~m} \mathrm{~s}^{-1}$.

State whether the football hits the crossbar, passes over the crossbar, or passes under the crossbar.
Justify your answer.

Marking Instructions for each question

Question			Expected response	Max mark	Additional guidance
1.	(a)	(i) (A)	$\begin{align*} & u_{h}=17.0 \cos 24.0 \\ & u_{h}=15.5 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	1	Accept: 16, 15.53, 15.530
		(i) (B)	$\begin{align*} u_{v} & =17.0 \sin 24.0 \\ u_{v} & =6.91 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	1	Accept: 6.9, 6.915, 6.9145
		(ii)	$\begin{align*} s & =\bar{v} t \tag{1}\\ 11 & =15.5 \times t \tag{1}\\ t & =0.71 \mathrm{~s} \end{align*}$	2	SHOW question Accept: $\begin{aligned} & s=v t \\ & s=u t \\ & d=v t \\ & d=\bar{v} t \\ & s=u t+\frac{1}{2} a t^{2} \quad(\text { with } a=0) \\ & s=\frac{1}{2}(u+v) t(\text { with } u=v) \end{aligned}$ Alternative method: (as ball is at its maximum height) $v=u+a t$ (u and a must have opposite signs)

Back to Table

Question			Expected response	Max mark	Additional guidance
1.		(iii)	$\begin{align*} & s=u t+\frac{1}{2} a t^{2} \tag{1}\\ & s=6.91 \times 0.71+\frac{1}{2} \times-9.8 \times 0.71^{2} \tag{1}\\ & s=2.4 \mathrm{~m} \tag{1} \end{align*}$	3	OR consistent with (a)(i)(B) Accept: 2, 2.44, 2.436 Alternative methods: $\begin{aligned} & v^{2}=u^{2}+2 a s \\ & 0^{2}=6.91^{2}+2 \times-9.8 \times s \\ & s=2.4 \mathrm{~m} \end{aligned}$ Accept: 2, 2.44, 2.436 for this method. $\begin{aligned} & s=\frac{1}{2}(u+v) t \\ & s=\frac{1}{2} \times(6.91+0) \times 0.71 \\ & s=2.5 \mathrm{~m} \end{aligned}$ Accept: 2, 2.45, 2.453 for this method.
	(b)		under The ball has a smaller (initial) vertical (component of) velocity (so never reaches the same height).	2	JUSTIFY question Accept: below Accept: speed instead of velocity

2. A student carries out an experiment to investigate friction between a puck and the surface of a table.

The student measures the mass m of the puck.
The student pushes the puck and releases it at point R. The student measures the initial speed u of the puck as it is released at R.
The puck travels distance d before coming to rest in the centre of the target.
The student records the following measurements:
mass of puck, $m=0.350 \mathrm{~kg}$
initial speed of puck, $u=0.78 \mathrm{~m} \mathrm{~s}^{-1}$
distance travelled by puck, $d=2.160 \mathrm{~m}$.
(a) (i) Calculate the average acceleration of the puck between point R and the centre of the target.
Space for working and answer
2. (a) (continued)
(ii) Calculate the magnitude of the average force of friction between the puck and the table.
Space for working and answer
(b) The student determines the absolute and percentage scale reading uncertainties for each measurement.

	Measurement	Absolute uncertainty	Percentage uncertainty
Mass of puck, m	0.350 kg	$\pm 0.001 \mathrm{~kg}$	0.3%
Initial speed of puck, u	$0.78 \mathrm{~m} \mathrm{~s}^{-1}$	$\pm 0.01 \mathrm{~m} \mathrm{~s}^{-1}$	1.3%
Distance travelled by puck, d	2.160 m	$\pm 0.001 \mathrm{~m}$	0.05%

The student makes the following statement:
'The best way to reduce the uncertainty in the value calculated for the average force is to use a balance that measures to the nearest 0.0001 kg to measure the mass of the puck.'

Explain why the student's statement is incorrect.

Back to Table

Question			Expected response	Max mark	Additional guidance
2.	(a)	(i)	$\begin{align*} v^{2} & =u^{2}+2 a s \tag{1}\\ 0^{2} & =0.78^{2}+2 \times a \times 2.160 \tag{1}\\ a & =-0.14 \mathrm{~m} \mathrm{~s}^{-2} \tag{1} \end{align*}$	3	Accept: -0.1, -0.141, -0.1408 Accept ' $0.14 \mathrm{~m} \mathrm{~s}^{-2}$ to the left' a must be opposite sign from u and s Alternative methods: Both relationships Both substitutions Final answer Do not accept ' $a=-0.14 \mathrm{~m} \mathrm{~s}^{-2}$ to the left'
		(ii)	$\begin{align*} & F=m a \tag{1}\\ & F=0.350 \times(-) 0.14 \tag{1}\\ & F=(-) 0.049 \mathrm{~N} \tag{1} \end{align*}$	3	OR consistent with (a)(i) Accept: 0.05, 0.0490, 0.04900 In this question, ignore negative signs in both the substitution and final answer for force. Alternative method: $\begin{align*} & F d=\frac{1}{2} m v^{2} \\ & F \times 2.160=\frac{1}{2} \times 0.350 \times 0.78^{2} \\ & F=0.049 \mathrm{~N} \tag{1} \end{align*}$ Both relationships Both substitutions Final answer Accept: 0.05, 0.0493, 0.04929 for this method.
	(b)		Mass does not have the largest percentage uncertainty. OR Initial speed has largest percentage uncertainty.	1	Accept: '\%' for percentage 'fractional' for percentage Absolute uncertainty on its own, (0) marks.

3. A student sets up an experiment to investigate the interaction between two trolleys on a smooth, horizontal track.

The mass of trolley X is 0.50 kg and the mass of trolley Y is 0.25 kg .

light gate 2
The trolleys X and Y are moving together to the right at $0.40 \mathrm{~m} \mathrm{~s}^{-1}$.

light gate 2

When the trolleys are between the light gates, a plunger in trolley X is activated.
The plunger extends and pushes trolley Y with an average force of 6.25 N for a short time, so that the trolleys separate.

Trolley Y now moves to the right at $1.80 \mathrm{~m} \mathrm{~s}^{-1}$.
The effects of friction are negligible.

3. (continued)
(a) (i) Calculate the magnitude of the change in momentum of trolley Y when the plunger is activated.
Space for working and answer
(ii) Calculate the time during which the plunger exerts a force on trolley Y . Space for working and answer
(b) Calculate the velocity of trolley X immediately after the trolleys separate. Space for working and answer
3. (continued)
(c) Explain how the student would determine whether this interaction was elastic.
(d) The light gates used during the experiment each contain a lamp and a photodiode.
A photodiode is a p-n junction.
(i) A photodiode produces a potential difference when photons of light are incident on it.
State the name of this effect.
(ii) Light from the lamp is incident on the photodiode.

Using band theory, explain how a potential difference is produced when photons of light are incident on the photodiode.

Back to Table

Question			Expected response	Max mark	Additional guidance
3.	(a)	(i)	$\begin{align*} & \Delta m v=m v-m u \tag{1}\\ & \Delta m v=(0.25 \times 1.80)-(0.25 \times 0.40) \tag{1}\\ & \Delta m v=0.35 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	3	Accept: 0.4, 0.350, 0.3500 Accept: $\begin{aligned} & \Delta p=m \Delta v \\ & F t=m v-m u \\ & p=m v \end{aligned}$ Do not accept: $p=m v-m u-0 \text { marks }$ For alternative methods: Acceptable relationship all substitutions including subtraction Final answer Sign convention must be consistent within this part of the question. v and u must have same sign. Accept N s
		(ii)	$\begin{align*} & F t=m v-m u \tag{1}\\ & 6.25 \times t=0.35 \tag{1}\\ & t=0.056 \mathrm{~s} \tag{1} \end{align*}$	3	OR consistent with (a)(i) Accept: 0.06, 0.0560, 0.05600 Alternative method: $\begin{align*} & F=m a \\ & 6.25=0.25 \times a \\ & v=u+a t \\ & 1.80=0.40+\left(\frac{6.25}{0.25}\right) \times t \\ & t=0.056 \mathrm{~s} \tag{1} \end{align*}$ Both relationships Both substitutions Final answer

Back to Table

	uesti	Expected response	Max mark	Additional guidance
3.	(b)	(total momentum before $=$ total momentum after) $\begin{align*} & m_{x} u_{x}+m_{y} u_{y}=m_{x} v_{x}+m_{y} v_{y} \tag{1}\\ & (0.50 \times 0.40)+(0.25 \times 0.40) \tag{1}\\ & =\left(0.50 v_{x}\right)+(0.25 \times 1.80) \tag{1}\\ & v_{x}=-0.30 \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$ OR $\begin{align*} & \left(m_{x}+m_{y}\right) u=m_{x} v_{x}+m_{y} v_{y} \tag{1}\\ & (0.50+0.25) \times 0.40 \\ & =\left(0.50 v_{x}\right)+(0.25 \times 1.80) \tag{1}\\ & v_{x}=-0.30 \mathrm{~ms}^{-1} \tag{1} \end{align*}$ (Accept ‘ $0.30 \mathrm{~m} \mathrm{~s}^{-1}$ to the left')	3	Accept: -0.3, -0.300, -0.3000 Equating the total momenta before and after All substitutions Final answer Sign convention must be consistent. Do not accept: ' $v_{\mathrm{x}}=-0.30 \mathrm{~m} \mathrm{~s}^{-1}$ to the left' Alternative methods: $\begin{aligned} & \Delta m v=m v-m u \\ & -0.35=(0.50 v)-(0.50 \times 0.40) \\ & v=-0.30 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ $\Delta m v$ and u must have opposite signs $\begin{aligned} & F t=m v-m u \\ & -6.25 \times 0.056 \\ & =(0.50 v)-(0.50 \times 0.40) \\ & v=-0.30 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ F and u must have opposite signs $\begin{aligned} & F=m a \\ & -6.25=0.50 \times a \\ & v=u+a t \\ & v=0.40+\left(\left(\frac{-6.25}{0.5}\right) \times 0.056\right) \\ & v=-0.30 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ F and u must have opposite signs

Back to Table

Question			Expected response	Max mark	Additional guidance
3.	(c)		Calculate/compare the total kinetic energy before and (total kinetic energy) after. If (total) kinetic energy before is equal to (total) kinetic energy after, the interaction is elastic. OR If (total) kinetic energy is conserved, the interaction is elastic.	2	Accept: E_{k} for 'kinetic energy’. Look for a statement relating to calculating/finding the total E_{k} before and after first, otherwise (0) marks. There must be an indication of total kinetic energy or equivalent term. Accept: Can show by calculation but would still require a statement for the second mark. Do not accept: If (total) kinetic energy is not conserved, the interaction is inelastic, on its own.
	(d)	(i)	Photovoltaic (effect)	1	
		(ii)	Electrons gain/absorb energy from photons/light Electrons move from valence band to conduction band Electrons move towards n-type semiconductor (producing a potential difference).	3	Look for reference to both conduction and valence band first, otherwise (0) marks. Bands must be named correctly, e.g. do not accept 'valency' or 'conductive'. Third statement is dependent on second statement. The direction the electrons move must be clear.

4. In 2012, a record was set for a stunt involving the highest skydive without deploying a parachute.
The person jumped from a helicopter at an altitude of 730 m above the ground. They 'flew' in a specially designed wing suit, at speeds of up to $130 \mathrm{~km} \mathrm{~h}^{-1}$, for nearly 1.5 km before landing safely on empty cardboard boxes.

Using your knowledge of physics, comment on the challenges involved in carrying out the stunt successfully.
5. A teacher uses a buzzer attached to a string to demonstrate the Doppler effect to a group of students.
The buzzer produces a sound of constant frequency.
The teacher swings the buzzer at a constant speed in a horizontal circle.

students
(a) Explain, in terms of wavefronts, why the frequency of the sound heard by the students is lower as the buzzer moves away from them compared to when the buzzer is moving towards them.

You may wish to use a diagram.

5. (continued)

(b) The teacher uses the Doppler effect model to explain observations of the light emitted by a binary star system.
A binary star system consists of two stars that orbit a common fixed point.

Line spectra are obtained from the stars in the binary system and compared with the line spectrum from the Sun.

Part of the line spectra for star B and the Sun are shown below.
\square

increasing wavelength

5. (b) (continued)

(i) One of the lines in the spectrum from the Sun has a wavelength of 580 nm . The wavelength of the corresponding line in the spectrum from star B has a wavelength of 610 nm .
Calculate the redshift of star B.
Space for working and answer
(ii) Determine the approximate distance from Earth to the binary star system.
Space for working and answer
5. (continued)
(c) (i) At one instant in their orbits around the fixed point, the stars in the binary system are $3.44 \times 10^{12} \mathrm{~m}$ apart.
The mass of star A is $2.19 \times 10^{30} \mathrm{~kg}$ and the mass of star B is $1.80 \times 10^{30} \mathrm{~kg}$.
Calculate the gravitational force between star A and star B at this instant.
Space for working and answer
(ii) At another point in their orbits the distance between the stars is half that in (c) (i).
State how many times greater the gravitational force between star A and star B is at this point, compared to that in (c) (i).

Question			Expected response	Max mark	Additional guidance
5.	(a)		When moving away from the students: Statement that there are fewer wavefronts per second OR The wavefronts are further apart When moving towards the students: Statement that there are more wavefronts per second OR The wavefronts are closer together OR diagram showing wavefronts closer together ahead of the buzzer and further apart behind it. or any similar response	2	Look for reference to wavefronts/wavelengths/waves first, otherwise (0) marks. In a diagram, there must be an implication of direction of travel.
	(b)	(i)	$\begin{align*} & z=\frac{\lambda_{\text {observed }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}} \tag{1}\\ & z=\frac{610 \times 10^{-9}-580 \times 10^{-9}}{580 \times 10^{-9}} \tag{1}\\ & z=0.052 \tag{1} \end{align*}$	3	Accept: 0.05, 0.0517, 0.05172 $\begin{aligned} & z=\frac{\lambda_{\text {observed }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}} \\ & z=\frac{610-580}{580} \\ & z=0.052 \end{aligned}$
		(ii)	$\begin{align*} z & =\frac{v}{c} \tag{1}\\ 0.052 & =\frac{v}{3.00 \times 10^{8}} \tag{1}\\ v & =H_{0} d \tag{1}\\ 0.052 & \times 3.00 \times 10^{8}=2.3 \times 10^{-18} \times d \tag{1}\\ d & =6.8 \times 10^{24} \mathrm{~m} \tag{1} \end{align*}$	5	OR consistent with (b)(i) Accept: 7, 6.78, 6.783 $\begin{aligned} & z=\frac{v}{c} \quad \text { relationship anywhere (1) } \\ & v=H_{0} d \text { relationship anywhere (1) } \end{aligned}$
	(c)	(i)	$\begin{align*} & F=G \frac{m_{1} m_{2}}{r^{2}} \tag{1}\\ & F=6.67 \times 10^{-11} \times \frac{2.19 \times 10^{30} \times 1.80 \times 10^{30}}{\left(3.44 \times 10^{12}\right)^{2}} \tag{1}\\ & F=2.22 \times 10^{25} \mathrm{~N} \tag{1} \end{align*}$	3	Accept: 2.2, 2.222, 2.2219
		(ii)	(Force is) four (times greater).	1	

6. The Standard Model explains how the basic building blocks of matter interact, governed by four fundamental forces.
(a) Name the type of particle that is composed of a quark-antiquark pair.
(b) A particle known as a positive kaon $\left(\mathrm{K}^{+}\right)$is composed of an up quark and an anti-strange quark.
(i) The negative kaon particle $\left(\mathrm{K}^{-}\right)$is the antiparticle of the K^{+}particle. State the names of the quarks that make up the K^{-}particle.
(ii) The W-boson is the force-mediating particle associated with the decay of kaons.
Name the fundamental force involved in the decay of kaons.
7. (continued)
(c) Another particle, known as a pion (π), is a product of kaon decay.

A beam of pions, travelling in a straight line at a speed of 0.95 c, passes between two detectors.
The detectors are 30.0 m apart as measured by a stationary observer.

(i) Calculate the time taken for a pion to travel between the two detectors in the frame of reference of the stationary observer.
Space for working and answer
(ii) Calculate the distance between the two detectors in the frame of reference of the pions.
Space for working and answer
6. (continued)
(d) Pions have a mean lifetime of 26 ns in their frame of reference.

Explain why a greater number of pions are detected at the second detector than would be expected if relativistic effects are not taken into account.
(e) The use of analogies from everyday life can help improve the understanding of physics concepts.
A website states that the Standard Model is like a set of children's building blocks with all sorts of different shapes and sizes, and these building blocks make up all matter.

Using your knowledge of physics, comment on this analogy.

Back to Table

Question			Expected response	Max mark	Additional guidance
6.	(a)		Meson(s)	1	
	(b)	(i)	Anti-up strange	1	Both required Do not accept: anti anti-strange
		(ii)	Weak (nuclear force)	1	
	(c)	(i)	$\begin{align*} d & =v t \tag{1}\\ 30.0 & =\left(0.95 \times 3.00 \times 10^{8}\right) \times t \tag{1}\\ t & =1.05 \times 10^{-7} \mathrm{~s} \end{align*}$	3	Accept: 1.1, 1.053, 1.0526
		(ii)	$\begin{align*} & l^{\prime}=l \sqrt{1-\left(\frac{v}{c}\right)^{2}} \tag{1}\\ & l^{\prime}=30.0 \sqrt{1-\left(\frac{0.95 c}{c}\right)^{2}} \tag{1}\\ & l^{\prime}=9.37 \mathrm{~m} \end{align*}$	3	Accept: 9.4, 9.367, 9.3675 Accept: $l^{\prime}=30.0 \sqrt{1-(0.95)^{2}}$
	(d)		For a stationary observer's frame of reference, the mean lifetime of the pion is greater (than 26 ns) OR In a pion's frame of reference, the distance is shorter (than 30.0 m).	1	The response must involve a statement referring to, or implying, a frame of reference.

7. Protons are accelerated by an electric field between metal plates A and B, in a vacuum.

Part of the apparatus used is shown.

(a) Explain why the protons are accelerated by the electric field.
(b) (i) A proton is travelling at a speed of $3.8 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$ at plate A . Show that the kinetic energy of the proton at plate A is $1.2 \times 10^{-16} \mathrm{~J}$.
7. (b) (continued)
(ii) The potential difference between plates A and B is 2.8 kV .

Calculate the work done on the proton as it accelerates from plate A to plate B.

Space for working and answer
(iii) Determine the speed of the proton at plate B.

Space for working and answer

7. (continued)

(c) The distance between plates A and B is now doubled.

The potential difference between plates A and B is unchanged.
Another proton, with the same initial speed at plate A, is accelerated between the plates.

State what effect, if any, this has on the speed of the proton at plate B.
You must justify your answer.

Back to Table

Question			Expected response	Max mark	Additional guidance
7.	(a)		Protons are (positively) charged Protons experience a force (in the electric field)	2	Must state protons are charged otherwise, maximum (1) mark. Any mention of protons being negatively charged or uncharged award (0) marks. Charged particles experience a force, on its own, award (1) mark.
	(b)	(i)	$\begin{align*} & E_{k}=\frac{1}{2} m v^{2} \tag{1}\\ & E_{k}=\frac{1}{2} \times 1.673 \times 10^{-27} \times\left(3.8 \times 10^{5}\right)^{2} \tag{1}\\ & E_{k}=1.2 \times 10^{-16} \mathrm{~J} \end{align*}$	2	SHOW question
		(ii)	$\begin{align*} & W=Q V \tag{1}\\ & W=1.60 \times 10^{-19} \times 2.8 \times 10^{3} \tag{1}\\ & W=4.5 \times 10^{-16} \mathrm{~J} \tag{1} \end{align*}$	3	Accept: 4, 4.48, 4.480
		(iii)	$\begin{align*} & E_{k}=1.2 \times 10^{-16}+4.5 \times 10^{-16} \tag{1}\\ &\left(E_{k}\right.\left.=5.7 \times 10^{-16} \mathrm{~J}\right) \tag{1}\\ & E_{k}=\frac{1}{2} m v^{2} \tag{1}\\ &\left(1.2 \times 10^{-16}+4.5 \times 10^{-16}\right) \\ &=\frac{1}{2} \times 1.673 \times 10^{-27} \times v^{2} \tag{1}\\ & v=8.3 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1} \tag{1} \end{align*}$	4	OR consistent with (b)(ii) Accept: 8, 8.25, 8.255 $E_{k}=\frac{1}{2} m v^{2} \text { anywhere }$ Must attempt addition of kinetic energy and work done, otherwise maximum (1) mark. Demonstrated arithmetic mistake can be carried forward through the response. If using $4.48 \times 10^{-16}(\mathrm{~J})$, accept: 8, 8.2, 8.24, 8.240
	(c)		No effect Work done is the same OR gain in kinetic energy is the same (1)	2	MUST JUSTIFY Look for this statement first - if incorrect or missing then (0) marks. charge and potential difference are unchanged, on its own, is insufficient for second mark. Any mention of magnetic field/force on its own is insufficient for second mark.

8. A student investigates light from a sodium vapour lamp. Sodium vapour lamps emit yellow light.
The light from the lamp is passed through a collimator. The collimator is used to produce a parallel beam of light.

The apparatus is set up in a darkened laboratory.

metre stick
(a) The parallel beam is shone onto a screen. The distance between the end of the collimator and the screen is 0.40 m .
The beam produces a uniformly lit spot of radius $15 \times 10^{-3} \mathrm{~m}$ as shown.

8. (a) (continued)

(i) The irradiance of the spot of light on the screen is $17 \mathrm{Wm}^{-2}$. Determine the power of the beam of light.
Space for working and answer
(ii) The distance between the screen and the end of the collimator is now increased.

The spot produced on the screen has the same radius as before.
Explain why this experimental setup is not suitable for investigating the inverse square law.

8. (continued)

(b) The student now looks at the beam of light through a spectroscope and views a bright yellow spectral line with a wavelength of 589.0 nm .
This light is emitted when electrons make a transition from one energy level to another within sodium atoms.
(i) State whether electrons are moving to a higher or a lower energy level when this light is emitted.
(ii) Calculate the difference in energy between the two energy levels in the sodium atoms that produce this yellow light.

Space for working and answer

8. (b) (continued)

(iii) The student observes a second yellow spectral line at a wavelength of 589.6 nm .

The student observes that the line at 589.0 nm is brighter than the line at 589.6 nm .

Explain the student's observation.

Back to Table

Question			Expected response	Max mark	Additional guidance
8.	(a)	(i)	$\begin{align*} & \left(A=\pi r^{2}\right) \\ & A=\pi \times\left(15 \times 10^{-3}\right)^{2} \tag{1} \end{align*}$ $\begin{align*} & I=\frac{P}{A} \tag{1}\\ & 17=\frac{P}{\pi \times\left(15 \times 10^{-3}\right)^{2}} \tag{1}\\ & P=0.012 \mathrm{~W} \tag{1} \end{align*}$	4	Accept: 0.01, 0.0120, 0.01202 The use of 3.14 is acceptable for π. For use of 3.14 , accept: $P=0.01201$ $I=\frac{P}{A} \quad$ anywhere If no attempt to calculate area, maximum (1) mark for irradiance relationship.
		(ii)	(Experimental setup is) not a point source OR Parallel beam so the irradiance does not change with distance.	1	Accept: The beam of light does not diverge Sodium lamp is not a point source, on its own - award (0) marks.
	(b)	(i)	Lower (energy level)	1	
		(ii)	$\begin{align*} & v=f \lambda \tag{1}\\ & 3.00 \times 10^{8}=f \times 589.0 \times 10^{-9} \tag{1} \end{align*}$ $\begin{align*} & E=h f \tag{1}\\ & E=6.63 \times 10^{-34} \times\left(\frac{3.00 \times 10^{8}}{589.0 \times 10^{-9}}\right) \tag{1}\\ & E=3.38 \times 10^{-19} \mathrm{~J} \tag{1} \end{align*}$	5	Accept: 3.4, 3.377, 3.3769 Accept: $\Delta E=h f$ OR $\begin{equation*} E_{2}-E_{1}=h f \tag{1} \end{equation*}$ $v=f \lambda$ anywhere $E=h f$ anywhere Alternative method: $(\Delta) E=\frac{h c}{\lambda}$ OR $\begin{equation*} E_{2}-E_{1}=\frac{h c}{\lambda} \tag{2} \end{equation*}$ Combined relationship Substitution for c and λ Substitution for h Final answer (1)

Back to Table

Question			Expected response	Max mark	Additional guidance
8.	(b)	(iii)	There are more electrons (per second) making the transition for the 589.0 nm line. Meaning more photons (per second) are emitted. OR There are fewer electrons (per second) making the transition for the 589.6 nm line. Meaning fewer photons (per second) are emitted.	2	Do not accept greater brightness due to greater frequency/energy of the photons.

9. The apparatus shown is used to investigate photoemission.

Electromagnetic radiation is incident on metal X .

(a) The frequency of the electromagnetic radiation is varied. The maximum kinetic energy of the photoelectrons emitted from metal X is determined for a range of frequencies.
The graph shows how the maximum kinetic energy E_{k} of the photoelectrons varies with frequency f.

Using the graph, determine the threshold frequency f_{0} of metal X .

9. (continued)

(b) The work function of different metals is shown in the table.

Metal	Work function (J)
Potassium	3.7×10^{-19}
Calcium	4.6×10^{-19}
Zinc	5.8×10^{-19}
Gold	8.5×10^{-19}

Identify which of these metals is metal X .
Justify your answer by calculation.
Space for working and answer

Back to Table

Question		Expected response	Max mark	Additional guidance
9.	(a)	$\left(f_{0}=\right) 7.0 \times 10^{14} \mathrm{~Hz}$	1	Accept: $7 \times 10^{14} \mathrm{~Hz}$ Accept: $6.9 \times 10^{14}-7.1 \times 10^{14} \mathrm{~Hz}$
	(b)	$\begin{align*} & E=h f_{0} \tag{1}\\ & E=6.63 \times 10^{-34} \times 7.0 \times 10^{14} \tag{1}\\ & E=4.6 \times 10^{-19}(\mathrm{~J}) \tag{1} \end{align*}$ Calcium/Ca	4	OR consistent with (a) Accept: 5, 4.64, 4.641 If calcium is correctly identified with no calculation, maximum (1) mark. If there is a calculation with a value consistent with (a), then the metal chosen must be consistent with their calculation. If this calculated value does not match a value in the table, then maximum (3) marks. A unit is not required but, if a unit is given, it must be correct. If a candidate completes a calculation but does not go on to identify a metal, then a unit is required. In this question, if an incorrect metal or no metal identified, maximum (3) marks. Accept: $E=h f$ Alternative method: $\begin{align*} E & =h f_{0} \tag{1}\\ 4.6 \times 10^{-19} & =6.63 \times 10^{-34} \times f_{0} \tag{1}\\ f_{0} & =6.9 \times 10^{14}(\mathrm{~Hz}) \tag{1} \end{align*}$ Therefore calcium Accept: 7, 6.94, 6.938 Where more than one calculation is shown all substitutions must be correct for substitution mark, and all calculated values must be correct for calculated value mark. Accept: $E_{k}=h f-h f_{\text {o }}$ Substituted values must be consistent with the line or the table, depending on the method chosen.

10. A student is carrying out an experiment to investigate the interference of sound waves.

Two identical loudspeakers, L_{1} and L_{2}, are connected to a signal generator as shown.

A sound level meter is moved from A to B, and a series of maxima are detected.
(a) The sound waves emitted from the loudspeakers are coherent. State what is meant by the term coherent.
(b) Explain, in terms of waves, how a maximum is produced.
10. (continued)
(c) The wavelength of the soundwaves is 0.400 m .

The distance from L_{2} to the third order maximum at point P is 6.00 m .
Determine the distance from L_{1} to P.
Space for working and answer
(d) A second student in the room is wearing a pair of active noise cancelling (ANC) headphones.

The student switches on the ANC function. The sound level from the loudspeakers, heard by this student, decreases significantly.
Name the type of interference that the headphones use to reduce the sound level.

Question		Expected response	Max mark	Additional guidance
10.	(a)	(The sound waves from the loudspeakers have a) constant phase relationship (and have the same frequency, wavelength, and velocity).	1	Accept: constant phase difference 'In phase' is not sufficient.
	(b)	Waves meet in phase. OR Crest meets crest. OR Trough meets trough. OR Path difference $=m \lambda$	1	Accept: peak for crest. Can be shown by diagram e.g. $M A+M A B$ Diagram must imply addition of two waves in phase. Do not accept: 'join' or 'merge' alone.
	(c)	$\begin{align*} \text { path difference } & =\mathrm{m} \lambda \tag{1}\\ \text { path difference } & =3 \times 0.400 \\ \text { path difference } & =L_{2} P-L_{1} P \\ (3 \times 0.400) & =6.00-L_{1} P \tag{1}\\ L_{1} P & =4.80 \mathrm{~m} \tag{1} \end{align*}$	4	Accept: 4.8, 4.800, 4.8000 OR $\begin{aligned} L_{2} P-L_{1} P & =\mathrm{m} \lambda \\ 6.00-L_{1} P & =3 \times 0.400 \\ L_{1} P & =4.80 \mathrm{~m} \end{aligned}$ An indication that path difference $=\mathrm{m} \lambda$ Substitution for m and λ Equate path difference to $6-L_{1} P$ Final answer
	(d)	Destructive (interference)	1	Do not accept: deconstructive

11. A triangular prism of borosilicate glass is placed inside a tank that has clear plastic walls.
(a) A ray of monochromatic light passes through the glass prism and exits the plastic tank at point R , as shown.

The refractive index of the glass for this light is 1.47 .
Calculate angle θ.
Space for working and answer
(b) Calculate the critical angle of the glass for this light.
11. (continued)
(c) The plastic tank is now filled with vegetable oil. The refractive index of the vegetable oil for this light is 1.47 .

State at which point, P, Q, R, S, or T, the ray of light will now leave the plastic tank.
Justify your answer.

Back to Table

Question		Expected response	Max mark	Additional guidance
11.	(a)	$\begin{align*} & n=\frac{\sin \theta_{1}}{\sin \theta_{2}} \tag{1}\\ & 1.47=\frac{\sin \theta_{1}}{\sin 37.0} \tag{1}\\ & \theta_{1}=62.2^{\circ} \tag{1} \end{align*}$	3	Accept: 62, 62.21, 62.211 Accept: $\begin{gather*} \frac{n_{2}}{n_{1}}=\frac{\sin \theta_{1}}{\sin \theta_{2}} \tag{1}\\ \frac{1.47}{1}=\frac{\sin \theta_{1}}{\sin 37.0} \tag{1}\\ \theta_{1}=62.2^{\circ} \tag{1} \end{gather*}$
	(b)	$\begin{align*} & \sin \theta_{c}=\frac{1}{n} \tag{1}\\ & \sin \theta_{c}=\frac{1}{1.47} \tag{1}\\ & \theta_{c}=42.9^{\circ} \tag{1} \end{align*}$	3	Accept: 43, 42.86, 42.865
	(c)	(point) P The (absolute) refractive index of the vegetable oil (for this light) is the same as the (absolute) refractive index of the glass (therefore there is no refraction/change in speed/ wavelength/direction).	2	Look for this statement first - if incorrect or missing then (0) marks. Indication of point P being selected on the diagram can be accepted as an alternative for a statement. Accept: The refractive indices/indexes are the same. The refractive index is the same. The (value of) refractive index has not changed.

12. A student uses the following circuit to investigate the internal resistance r and EMF E of a battery.

Switch S is closed.
The student uses readings of current I and terminal potential difference V from this circuit to produce the graph shown.

(a) State what is meant by the term electromotive force (EMF).
12. (continued)
(b) Using information from the graph, determine:
(i) the EMF E of the battery
(ii) the internal resistance r of the battery.

Space for working and answer
(c) Using the circuit shown, describe how the student could measure the value of the EMF.
(d) Explain why the terminal potential difference of the battery decreases as the resistance of the variable resistor R is decreased.
12. (continued)
(e) The student now repeats the experiment with a different battery that has a smaller EMF and the same internal resistance.

On the graph below, add a line to show how the results of this experiment compare with the original experiment.
(An additional graph, if required, can be found on page 49.)

Page 65

Back to Table

Question			Expected response	Max mark	Additional guidance
12.	(a)		The energy gained by/supplied to 1 coulomb (of charge passing through the battery).	1	Accept: 'number of joules' for energy Accept: ‘unit charge’ for 1 coulomb.
	(b)	(i)	6.0 V	1	Accept: 6 V Accept: 5.95-6.05 V
		(ii)	$\begin{align*} & \left(m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) \\ & m=\frac{2.0-4.0}{0.50-0.25} \tag{1}\\ & m=-8.0 \tag{1} \end{align*}$ $\begin{align*} & (m=-r) \tag{1}\\ & r=8.0 \Omega \tag{1} \end{align*}$	3	Accept: 8, 8.00, 8.000 Gradient $=r$ is wrong physics, award (0) marks. substitution of any valid pair of points into gradient formula accept any point on a correctly extrapolated line e.g. $(0.00,6.0)$ calculated value of gradient Alternative method: $\begin{align*} & E=V+I r \tag{1}\\ & 6.0=2.0+0.50 \times r \tag{1}\\ & r=8.0 \Omega \tag{1} \end{align*}$ If using this method, must use data from the line. Or value of E consistent with (b)(i)
	(c)		Open the switch, and take the reading on the voltmeter (which is the EMF)	1	Accept: reading on the voltmeter for an open circuit OR reading on voltmeter before closing switch
	(d)		(As resistance decreases,) current increases Lost volts increases, (terminal potential difference decreases)	2	If there is wrong physics in the answer, award (0) marks.
	(e)		The line drawn can be extrapolated to intercept y-axis at less than 6.0 V Passably straight line of same gradient	2	

13. A student carries out an experiment to investigate the charging of a capacitor, using the circuit shown.

(a) Describe how the results of this experiment are obtained and used to show how the voltage across the capacitor varies with time while the capacitor is charging.
(b) The capacitor is initially uncharged.

The variable voltage supply is set at 12 V .
Switch S is closed.
The capacitor becomes fully charged.
(i) Calculate the maximum energy stored by the capacitor.

Space for working and answer
13. (b) (continued)
(ii) Suggest an alteration the student could make to this circuit to increase the maximum energy stored by the $47 \mu \mathrm{~F}$ capacitor.

Question			Expected response	Max mark	Additional guidance
13.	(a)		(Close the switch and) take readings on voltmeter at (regular) time intervals Plot a graph of voltage against time	2	
	(b)	(i)	$\begin{align*} & E=\frac{1}{2} C V^{2} \tag{1}\\ & E=\frac{1}{2} \times 47 \times 10^{-6} \times 12^{2} \tag{1}\\ & E=3.4 \times 10^{-3} \mathrm{~J} \tag{1} \end{align*}$	3	Accept: 3, 3.38, 3.384 Alternative methods: Both relationships (1) Both substitutions (1) Final answer
		(ii)	Increase the supply voltage	1	Must clearly indicate the supply voltage is increased/greater. If a value is given for the supply voltage then it must be greater than 12 V and less than or equal to 15 V . Accept: 'increase the voltage supplied to the circuit'. 'increase the voltage supplied to the capacitor'. Do not accept: 'increase the voltage across the capacitor' on its own. Do not accept: any implication of power supply being replaced by another power supply.

14. A student carries out an investigation to determine the gravitational field strength on Earth, using a simple pendulum.

A long string has a steel ball attached to the end of it. The length L of the pendulum can be adjusted.

The ball is raised through a small angle and then released.
The student records the time for ten complete swings and uses this to determine a value for the period T of the pendulum. The student then determines the value of T^{2}.

The student repeats the experiment for different lengths.
The results are shown in the table.

$\boldsymbol{L}(\mathrm{m})$	$T^{2}\left(\mathbf{s}^{2}\right)$
0.20	0.85
0.40	1.60
0.60	2.50
0.80	3.40
1.10	4.55

The gravitational field strength g can be determined using

$$
\frac{T^{2}}{L}=\frac{4 \pi^{2}}{g}
$$

(a) Using the square-ruled paper on page 46 , draw a graph of T^{2} against L.
(The table of results is also shown on page 47, opposite the square-ruled paper.)

Back to Table

	uest	Expected response	Max mark	Additional guidance
14.	(c)	$\left(\frac{T^{2}}{L}=\frac{4 \pi^{2}}{g}=\right.$ gradient $)$ $\begin{equation*} \frac{4 \pi^{2}}{g}=4.2 \tag{1} \end{equation*}$ $\begin{equation*} g=9.4 \mathrm{~N} \mathrm{~kg}^{-1} \tag{1} \end{equation*}$	2	Must be consistent with (b) Must substitute the gradient of their graph, and not a single data point. If a single data point is substituted into in the calculation, award (0) marks. The use of 3.14 is acceptable for π. Accept $\mathrm{m} \mathrm{s}^{-2}$. If a candidate has plotted L against T^{2}, this becomes $\begin{align*} & \left(\frac{L}{T^{2}}=\frac{g}{4 \pi^{2}}=\text { gradient }\right) \\ & \frac{g}{4 \pi^{2}}=0.24 \tag{1}\\ & g=9.5 \mathrm{~N} \mathrm{~kg}^{-1} \end{align*}$

[END OF MARKING INSTRUCTIONS]

14. (continued)
(b) Calculate the gradient of your graph. Space for working and answer
(c) Using the gradient of your graph, determine the gravitational field strength g.

Back to Table

Question		Expected response	Max mark	Additional guidance
14.	(a)	Appropriate labels and units Suitable scales Plotting and line of best fit	3	Allow for axes starting at zero, or broken axes, or at an appropriate value. Accuracy of plotting should be easily checkable with the scale chosen. An origin is not essential and can be implied by a suitable linear scale. If the origin is shown, the scale must either be continuous or the axis must be 'broken'. Otherwise maximum (2) marks. An appropriate scale must be linear over the range of the data. Accept: graph of L against T^{2}.
	(b)	$\begin{align*} & \left(m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) \\ & m=\frac{4-2}{0.96-0.48}(\text { for example }) \tag{1}\\ & m=4.2\left(\mathrm{~s}^{2} \mathrm{~m}^{-1}\right) \tag{1} \end{align*}$	2	Must be consistent with graph drawn for (a). Candidates are asked to calculate the gradient of their graph. Tolerance required depending upon best fit line drawn by the candidate. If candidates use values from the table, these points must lie on their line. A unit is not required in the final answer, but if stated it must be correct. If candidate has a non-linear scale over the range of the values used in the substitution, (0) marks. If candidate has drawn a 'dot to dot' graph or no line, (0) marks.

COMMON PHYSICAL QUANTITIES

Quantity	Symbol	Value	Quantity	Symbol	Value
Speed of light in vacuum	c	$3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Magnitude of the charge on an electron Universal Constant of Gravitation Gravitational acceleration on Earth Hubble's constant$\quad g$	$1.60 \times 10^{-19} \mathrm{C}$	Mass of electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$	

REFRACTIVE INDICES

The refractive indices refer to sodium light of wavelength 589 nm and to substances at a temperature of 273 K.

Substance	Refractive index	Substance	Refractive index
Diamond	2.42	Water	1.33
Crown glass	1.50	Air	1.00

SPECTRAL LINES

Element	Wavelength/nm	Colour	Element	Wavelength/nm	Colour
Hydrogen	$\begin{aligned} & 656 \\ & 486 \\ & 434 \\ & 410 \\ & 397 \\ & 389 \end{aligned}$	Red Blue-green Blue-violet Violet Ultraviolet Ultraviolet	Cadmium	644	Red
				509	Green
				480	Blue
			Lasers		
			Element	Wavelength/nm	Colour
Sodium	589	Yellow	Carbon dioxide Helium-neon	$\left.\begin{array}{r} 9550 \\ 10590 \\ 633 \end{array}\right\}$	Infrared Red

PROPERTIES OF SELECTED MATERIALS

Substance	Density $/ \mathrm{kg} \mathrm{m}^{-3}$	Melting point/K	Boiling point/K
Aluminium	2.70×10^{3}	933	2623
Copper	8.96×10^{3}	1357	2853
Ice	9.20×10^{2}	273	\ldots.
Sea Water	1.02×10^{3}	264	377
Water	1.00×10^{3}	273	373
Air	1.29	\ldots.	$\ldots \ldots$
Hydrogen	9.0×10^{-2}	14	20

The gas densities refer to a temperature of 273 K and a pressure of $1.01 \times 10^{5} \mathrm{~Pa}$.

Relationships required for Physics Higher

Additional relationships

Circle

circumference $=2 \pi r$
area $=\pi r^{2}$

Sphere

area $=4 \pi r^{2}$
volume $=\frac{4}{3} \pi r^{3}$

Trigonometry

$$
\begin{aligned}
& \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1
\end{aligned}
$$

			$\begin{aligned} & z \stackrel{N}{\sim} \\ & \stackrel{N}{\hat{D}} \underset{\sim}{\infty} \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$
			$\stackrel{N}{\stackrel{N}{\infty}} \underset{\underset{\sim}{\infty}}{\stackrel{\infty}{\infty}} N \dot{N}$

				爵 N	$\underset{\text { ® }}{\stackrel{\sim}{*}}$
					$\underset{ \pm}{\text { F }}$
					$\stackrel{\rightharpoonup}{*}$
					$\stackrel{\text { ® }}{ }$
				亮	$\stackrel{3}{3}$
					$\begin{aligned} & \frac{\text { I }}{\omega} \\ & \stackrel{\text { In }}{3} \end{aligned}$

