### **National 5 Physics**



### **Study Guide**

Name: \_\_\_\_\_

### Introduction

This study guide should be used to help National 5 Physics students prepare for their exam. When studying, you should use this booklet to help answer questions and track your progress. To be successful in physics you need to study **regularly** following the guidance in this booklet.

Final exam date - 25th of April 2024, 13:00 - 15:30 (2hrs 30mins).

### **Exam Format:**

Section 1 - 25 marks of multiple-choice questions.

Section 2 – 110 marks of extended answer questions.

### **Contents**

| Topic Checklist                      | p3  |
|--------------------------------------|-----|
| How to Study for Physics             | p4  |
| Calculator Help Sheet                | p5  |
| Method for Solving Problems (WAGOLL) | p6  |
| Prefixes and Greek Letters           | p7  |
| Command Words                        | p8  |
| Data Sheet                           | p9  |
| Formula Sheet                        | p10 |
| Past Paper Log                       | p11 |

### **National 5 Physics Topics**

### Unit 1 – Waves and Radiation

|                                | Revised? | Revised? | Revised? |
|--------------------------------|----------|----------|----------|
| Wave Parameters and Behaviours |          |          |          |
| Electromagnetic Spectrum       |          |          |          |
| Refraction of Light            |          |          |          |
| Types of Radiation             |          |          |          |
| Dosimetry and Safety           |          |          |          |
| Activity and Half-Life         |          |          |          |
| Nuclear Power                  |          |          |          |

### **Unit 2 – Dynamics and Space**

|                      | Rev | vised? | Revised? | Revised? |
|----------------------|-----|--------|----------|----------|
| Scalars and Vectors  |     |        |          |          |
| Velocity-time Graphs |     |        |          |          |
| Acceleration         |     |        |          |          |
| Newton's Laws        |     |        |          |          |
| Energy               |     |        |          |          |
| Projectile Motion    |     |        |          |          |
| Space Exploration    |     |        |          |          |
| Cosmology            |     |        |          |          |

### **Unit 3 – Electricity and Properties of Matter**

|                                             | Revised? | Revised? | Revised? |
|---------------------------------------------|----------|----------|----------|
| Electrical Charge Carriers                  |          |          |          |
| Potential Difference/Voltage                |          |          |          |
| Series and Parallel Circuits                |          |          |          |
| Practical Electronic Circuits (Transistors) |          |          |          |
| Electrical Power                            |          |          |          |
| Specific Heat Capacity                      |          |          |          |
| Specific Latent Heat                        |          |          |          |
| Gas Laws                                    |          |          |          |

# How to study for Physics

Pick a topic and follow these steps to effectively study Physics!

### 1. Review course material

Simply reading through your notes is  $\underline{\text{not enough}}$  to help you learn the content. You need to  $\underline{\text{do something}}$  with the material to help you understand it.

For example, you could:

- Create a Summary of your own notes highlighting the key points.
- Make flashcards either physical cards or digital ones using tools like Anki and Brainscape.
- Complete a mind-map (templates on your Teams page).
- Write questions that you can swap with classmates to answer.

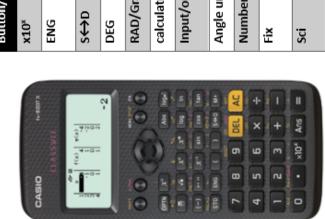


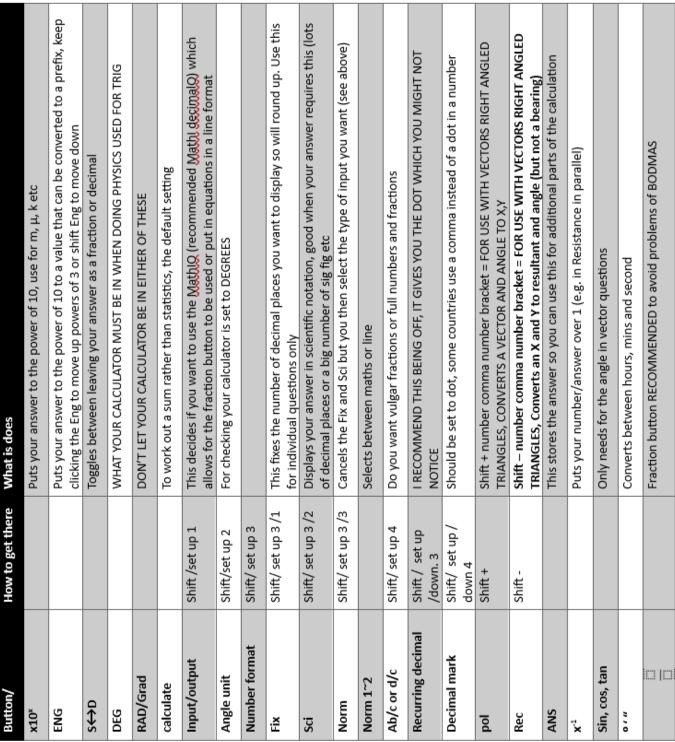
# 2. Problem Practice

Problem practice is key to success in physics. Regular practice helps reinforce your understanding of the concepts learned.

This should be done in two main ways:

- Tutorial Questions Work through your tutorial questions on your chosen topic.
- Past paper questions using the "Mr₌ Davie" past paper document on teams work your way through all the questions on your chosen topic. Make sure you check your answers using the marking scheme.


### 3. Ask for Help


If there are any concepts or questions you are still struggling with you can seek further help in several ways including:

- Asking your teacher bring the specific question or concept you are struggling with!
- Look at the summary notes or textbooks for a different perspective. There are a range of resources on Teams that can be useful for this.
- Work with your classmates to try and understand the concept better.
- Take a break and revisit the material another time sometimes a rest is all that is needed!



## **Calculator Help Sheet**





### W.A.G.O.L.L

### Solving Problems in Physics

When solving problems in physics follow the five steps below as shown in the example.

Step 1: Data List - Write the information given in the question in symbol form down the left-hand side to create a data list.

Step 2: Conversion - Convert your data list values into standard units. This may involve changing time into seconds or replacing prefixes where required.

Step 3: Formula - Write down the correct formula from the formula sheet. Look at your data list to help you here.

Step 4: Substitute - Substitute the values from your data list into the formula.

Step 5: Rearrange and Solve - Rearrange your equation if required (change side, change sign) and solve using your calculator. Remember to include units with your final answer.

**Example:** A school bus takes 20 minutes to travel 15km. What is the buses average speed for this journey?



t = 20mins = 1200s (20x60) d = vt

$$d = vt$$



$$d = 15km = 15 \times 10^3 m$$
  $15 \times 10^3 = v \times 1200$ 

$$15 \times 10^3 = v \times 1200$$



$$v = ?$$

$$v = \frac{15 \times 10^3}{1200}$$



$$v = 12.5 \text{ ms}^{-1}$$

### **Other Useful Information**

### **Prefixes**

| Prefix | Symbol | Multiple        | Scientific Not.   |
|--------|--------|-----------------|-------------------|
| Giga   | G      | X 1,000,000,000 | X10 <sup>9</sup>  |
| Mega   | М      | X 1,000,000     | X10 <sup>6</sup>  |
| Kilo   | k      | X 1,000         | X10 <sup>3</sup>  |
| Milli  | m      | ÷ 1,000         | X10 <sup>-3</sup> |
| Micro  | μ      | ÷ 1,000,000     | X10 <sup>-6</sup> |
| Nano   | n      | ÷ 1,000,000,000 | X10 <sup>-9</sup> |

### **Greek Alphabet**

| <b>Αα ALPHA</b> [a] <i>ἄλφα</i>                   | Bβ<br>βήτα [b]                          | <b>Γ</b> γ<br>GAMMA [g]<br>γάμμα              | Δδ  DELTA [d]  δέλτα                    | <b>Εε</b> EPSILON [e]  έ ψιλόν                   | Zζ<br>ZETA [dz]<br>ζήτα                                       |
|---------------------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------|--------------------------------------------------|---------------------------------------------------------------|
| Ηη<br>ETA [c:]<br>ήτα                             | <b>Θ</b> θ τ τ (t <sup>a</sup> ) θη τ α | It<br>Iota [i]                                | <b>Κκ ΚΑΡΡΑ</b> [k]  κάππα              | <b>Λλ</b> LAMBDA [1]  λάμβδα                     | $\underset{\mu\emptyset}{M}\mu$                               |
| $\underset{\nu \hat{\nu}}{N \nu}_{\text{[n]}}$    | Ξξ<br>xI [ks]<br>ξεl                    | <b>Οο</b> ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο | $\prod_{p_{I  [p]}\atop \pi \in I} \pi$ | $\Pr_{\rho \in \text{RHO } \{r\}}$               | $\sum_{\substack{\text{SIGMA} \text{ [s]}}} \sigma \varsigma$ |
| $T_{\tau}_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}$ | <b>Υυ</b> UPSILON [u]  δ ψελόν          | $\Phi_{\phi}_{\text{pel}}$                    | $\underset{\chi^{e\ell}}{X}\chi$        | $\displaystyle \underset{\text{pel}}{\Psi} \psi$ | Ωω<br>omega [0:]<br>ω μέγα                                    |

### **Command Words**

| Command                          | How to answer                                                                                                                                                                                                                                                                                                                     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Describe                         | You must provide a statement or structure of characteristics/features.                                                                                                                                                                                                                                                            |
| Determine or Calculate           | You must determine a number from given facts, figures or information. You should use numbers given in the question to work out the answer. You should always show your working.                                                                                                                                                   |
| Estimate                         | You must determine an approximate value for something.                                                                                                                                                                                                                                                                            |
| Explain                          | You must relate cause and effect and/or make relationships between things clear. You should make something clear or state the reasons for something happening. This means that points in the answer must be linked coherently and logically. The answer should not be a simple list of reasons.                                   |
| Identify, Name, State or<br>Give | You need only name or present in brief form. Only a short answer is required, not an explanation or a description. Often it can be answered with a single word, phrase or sentence.                                                                                                                                               |
| Justify                          | You must give reasons to support their suggestions or conclusions.  For example, this might be by identifying an appropriate relationship and the effect of changing variables.                                                                                                                                                   |
| Predict                          | You must suggest what may happen based on available information.                                                                                                                                                                                                                                                                  |
| Show that                        | You must use the appropriate formula to prove something (e.g. a given value) All steps, including the stated answer and units, must be shown.                                                                                                                                                                                     |
| Suggest                          | You must apply your knowledge and understanding of physics to a new situation. A number of responses are acceptable: marks will be awarded for any suggestions that are supported by knowledge and understanding of physics.                                                                                                      |
| Use your knowledge of physics    | You must apply your skills, knowledge and understanding to respond appropriately to the problem/situation presented.                                                                                                                                                                                                              |
| Use the information              | The answer must be based on the information given in the question. Unless the information given in the question is used, no marks can be given.                                                                                                                                                                                   |
| Compare                          | This requires you to describe the similarities and/or differences between things, not just write about one.  If you are asked to 'compare x with y', you need to write down something about x compared to y, using comparative words such as 'better, 'more than', 'less than', 'quicker', 'more expensive', 'on the other hand.' |

### Speed of light in materials

| Material       | Speed in m s <sup>−1</sup> |
|----------------|----------------------------|
| Air            | 3·0 × 10 <sup>8</sup>      |
| Carbon dioxide | 3·0 × 10 <sup>8</sup>      |
| Diamond        | 1·2 × 10 <sup>8</sup>      |
| Glass          | 2·0 × 10 <sup>8</sup>      |
| Glycerol       | 2·1 × 10 <sup>8</sup>      |
| Water          | 2·3 × 10 <sup>8</sup>      |

### Gravitational field strengths

|         | Gravitational field strength<br>on the surface in N kg <sup>-1</sup> |
|---------|----------------------------------------------------------------------|
| Earth   | 9-8                                                                  |
| Jupiter | 23                                                                   |
| Mars    | 3.7                                                                  |
| Mercury | 3.7                                                                  |
| Moon    | 1.6                                                                  |
| Neptune | 11                                                                   |
| Saturn  | 9.0                                                                  |
| Sun     | 270                                                                  |
| Uranus  | 8.7                                                                  |
| Venus   | 8.9                                                                  |

### Specific latent heat of fusion of materials

| Material       | Specific latent heat<br>of fusion in Jkg <sup>-1</sup> |  |
|----------------|--------------------------------------------------------|--|
| Alcohol        | 0·99 × 10 <sup>5</sup>                                 |  |
| Aluminium      | 3·95 × 10 <sup>5</sup>                                 |  |
| Carbon Dioxide | 1.80 × 10 <sup>5</sup>                                 |  |
| Copper         | 2·05 × 10 <sup>5</sup>                                 |  |
| Iron           | 2·67 × 10 <sup>5</sup>                                 |  |
| Lead           | 0·25 × 10 <sup>5</sup>                                 |  |
| Water          | 3·34 × 10 <sup>5</sup>                                 |  |

### Specific latent heat of vaporisation of materials

| Material       | Specific latent heat of vaporisation in Jkg <sup>¬</sup> |
|----------------|----------------------------------------------------------|
| Alcohol        | 11·2 × 10 <sup>5</sup>                                   |
| Carbon Dioxide | 3·77 × 10 <sup>5</sup>                                   |
| Glycerol       | 8·30 × 10 <sup>5</sup>                                   |
| Turpentine     | 2·90 × 10 <sup>5</sup>                                   |
| Water          | 22·6 × 10 <sup>5</sup>                                   |

### Speed of sound in materials

| Material       | Speed in m s <sup>-1</sup> |
|----------------|----------------------------|
| Aluminium      | 5200                       |
| Air            | 340                        |
| Bone           | 4100                       |
| Carbon dioxide | 270                        |
| Glycerol       | 1900                       |
| Muscle         | 1600                       |
| Steel          | 5200                       |
| Tissue         | 1500                       |
| Water          | 1500                       |

### Specific heat capacity of materials

| Material  | Specific heat capacity<br>in J kg <sup>¬1</sup> °C <sup>¬1</sup> |  |  |  |  |
|-----------|------------------------------------------------------------------|--|--|--|--|
| Alcohol   | 2350                                                             |  |  |  |  |
| Aluminium | 902                                                              |  |  |  |  |
| Copper    | 386                                                              |  |  |  |  |
| Glass     | 500                                                              |  |  |  |  |
| Ice       | 2100                                                             |  |  |  |  |
| Iron      | 480                                                              |  |  |  |  |
| Lead      | 128                                                              |  |  |  |  |
| Oil       | 2130                                                             |  |  |  |  |
| Water     | 4180                                                             |  |  |  |  |

### Melting and boiling points of materials

| Material  | Melting point<br>in °C | Boiling point<br>in °C |  |  |
|-----------|------------------------|------------------------|--|--|
| Alcohol   | -98                    | 65                     |  |  |
| Aluminium | 660                    | 2470                   |  |  |
| Copper    | 1077                   | 2567                   |  |  |
| Glycerol  | 18                     | 290                    |  |  |
| Lead      | 328                    | 1737                   |  |  |
| Iron      | 1537                   | 2737                   |  |  |

### Radiation weighting factors

| 5 5,              |                               |
|-------------------|-------------------------------|
| Type of radiation | Radiation<br>weighting factor |
| alpha             | 20                            |
| beta              | 1                             |
| fast neutrons     | 10                            |
| gamma             | 1                             |
| slow neutrons     | 3                             |

d = vt

 $d = \overline{v}t$ 

s = vt

 $s = \overline{v}t$ 

 $a = \frac{v - u}{t}$ 

F = ma

W = mg

 $E_w = Fd$ 

 $E_p = mgh$ 

 $E_k = \frac{1}{2}mv^2$ 

Q = It

V = IR

 $V_2 = \left(\frac{R_2}{R_1 + R_2}\right) V_S$ 

 $\frac{V_1}{V_2} = \frac{R_1}{R_2}$ 

 $R_{\scriptscriptstyle T} = R_{\scriptscriptstyle 1} + R_{\scriptscriptstyle 2} + ....$ 

 $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$ 

 $P = \frac{E}{t}$ 

P = IV

 $P = I^2 R$ 

 $P = \frac{V^2}{R}$ 

 $E_h = cm\Delta T$ 

 $E_h = ml$ 

 $p = \frac{F}{A}$ 

 $p_1V_1 = p_2V_2$ 

 $\frac{p_1}{T_1} = \frac{p_2}{T_2}$ 

 $\frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}}$ 

 $\frac{pV}{T}$  = constant

 $f = \frac{N}{t}$ 

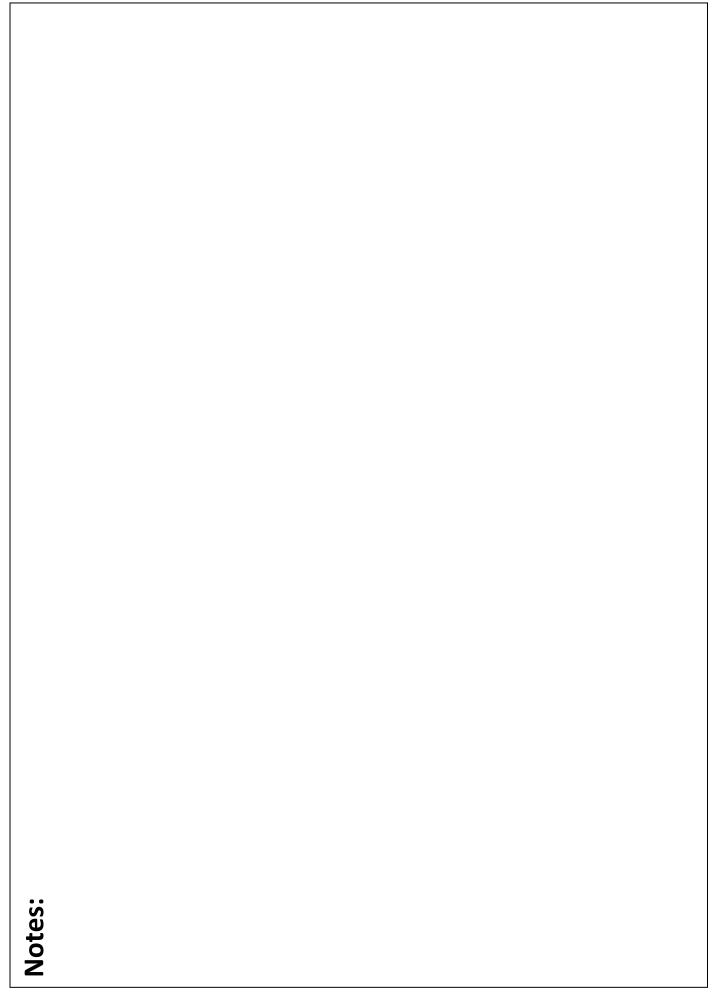
 $v = f\lambda$ 

 $T = \frac{1}{f}$ 

 $A = \frac{N}{t}$ 

 $D = \frac{E}{m}$ 

 $H = Dw_r$ 


 $\dot{H} = \frac{H}{t}$ 

# National 5 Physics - Past Paper Log

Name:

| Section 1 | Questions Wrong       | Q3,4,12,14,15,19,20,22,23,24,25 |      |      |      |      |      |      |      |      |      |          |
|-----------|-----------------------|---------------------------------|------|------|------|------|------|------|------|------|------|----------|
| Se        | Percentage            | %95                             |      |      |      |      |      |      |      |      |      |          |
|           | Mark (/25) Percentage | 14                              |      |      |      |      |      |      |      |      |      |          |
|           | Marked                | /                               |      |      |      |      |      |      |      |      |      |          |
|           | Completed             | <b>\</b>                        |      |      |      |      |      |      |      |      |      |          |
|           | Year                  | example                         | 2023 | 2022 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | SQA Mock |

| Section 2 | Questions Wrong  | Q2a + b, Q4, Q5, Q6b, Q9a, Q11 |      |      |      |      |      |      |      |      |      |          |
|-----------|------------------|--------------------------------|------|------|------|------|------|------|------|------|------|----------|
|           | /110) Percentage | 71%                            |      |      |      |      |      |      |      |      |      |          |
|           | Mark (/          | 82                             |      |      |      |      |      |      |      |      |      |          |
|           | Marked           | /                              |      |      |      |      |      |      |      |      |      |          |
|           | Completed        | >                              |      |      |      |      |      |      |      |      |      |          |
|           | Year             | example                        | 2023 | 2022 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | SQA Mock |

